Artículo
Renormalization group structure for sums of variables generated by incipiently chaotic maps
Fecha de publicación:
01/2010
Editorial:
IOP Publishing
Revista:
Journal of Statistical Mechanics: Theory and Experiment
ISSN:
1742-5468
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We look at the limit distributions of sums of deterministic chaotic variables in unimodal maps and find a remarkable renormalization group (RG) structure associated with the operation of increment of summands and rescaling. In this structure-where the only relevant variable is the difference in control parameter from its value at the transition to chaos-the trivial fixed point is the Gaussian distribution and a novel nontrivial fixed point is a multifractal distribution that emulates the Feigenbaum attractor, and is universal in the sense of the latter. The crossover between the two fixed points is explained and the flow toward the trivial fixed point is seen to be comparable to the chaotic band merging sequence. We discuss the nature of the central limit theorem for deterministic variables.
Palabras clave:
NONLINEAR DYNAMICS
,
RENORMALIZATION GROUP
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Fuentes, Miguel Angel; Robledo, Alberto; Renormalization group structure for sums of variables generated by incipiently chaotic maps; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2010; 1; 1-2010; 1-13
Compartir
Altmétricas