Mostrar el registro sencillo del ítem

dc.contributor.author
Palazzo, Martin  
dc.contributor.author
Beauseroy, Pierre  
dc.contributor.author
Yankilevich, Patricio  
dc.date.available
2021-02-03T13:22:55Z  
dc.date.issued
2019-12  
dc.identifier.citation
Palazzo, Martin; Beauseroy, Pierre; Yankilevich, Patricio; A Pan-cancer Somatic Mutation Embedding using Autoencoders; BioMed Central; BMC Bioinformatics; 20; 1; 12-2019; 1-10  
dc.identifier.issn
1471-2105  
dc.identifier.uri
http://hdl.handle.net/11336/124571  
dc.description.abstract
Background: Next generation sequencing instruments are providing new opportunities for comprehensive analyses of cancer genomes. The increasing availability of tumor data allows to research the complexity of cancer disease with machine learning methods. The large available repositories of high dimensional tumor samples characterised with germline and somatic mutation data requires advance computational modelling for data interpretation. In this work, we propose to analyze this complex data with neural network learning, a methodology that made impressive advances in image and natural language processing. Results: Here we present a tumor mutation profile analysis pipeline based on an autoencoder model, which is used to discover better representations of lower dimensionality from large somatic mutation data of 40 different tumor types and subtypes. Kernel learning with hierarchical cluster analysis are used to assess the quality of the learned somatic mutation embedding, on which support vector machine models are used to accurately classify tumor subtypes. Conclusions: The learned latent space maps the original samples in a much lower dimension while keeping the biological signals from the original tumor samples. This pipeline and the resulting embedding allows an easier exploration of the heterogeneity within and across tumor types and to perform an accurate classification of tumor samples in the pan-cancer somatic mutation landscape.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOENCODER  
dc.subject
CANCER GENOMICS  
dc.subject
KERNEL LEARNING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Pan-cancer Somatic Mutation Embedding using Autoencoders  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-20T19:55:00Z  
dc.journal.volume
20  
dc.journal.number
1  
dc.journal.pagination
1-10  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Palazzo, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Beauseroy, Pierre. Université de Technologie de Troyes; Francia  
dc.description.fil
Fil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina  
dc.journal.title
BMC Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3298-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1186/s12859-019-3298-z