Mostrar el registro sencillo del ítem
dc.contributor.author
Palazzo, Martin
dc.contributor.author
Beauseroy, Pierre
dc.contributor.author
Yankilevich, Patricio
dc.date.available
2021-02-03T13:22:55Z
dc.date.issued
2019-12
dc.identifier.citation
Palazzo, Martin; Beauseroy, Pierre; Yankilevich, Patricio; A Pan-cancer Somatic Mutation Embedding using Autoencoders; BioMed Central; BMC Bioinformatics; 20; 1; 12-2019; 1-10
dc.identifier.issn
1471-2105
dc.identifier.uri
http://hdl.handle.net/11336/124571
dc.description.abstract
Background: Next generation sequencing instruments are providing new opportunities for comprehensive analyses of cancer genomes. The increasing availability of tumor data allows to research the complexity of cancer disease with machine learning methods. The large available repositories of high dimensional tumor samples characterised with germline and somatic mutation data requires advance computational modelling for data interpretation. In this work, we propose to analyze this complex data with neural network learning, a methodology that made impressive advances in image and natural language processing. Results: Here we present a tumor mutation profile analysis pipeline based on an autoencoder model, which is used to discover better representations of lower dimensionality from large somatic mutation data of 40 different tumor types and subtypes. Kernel learning with hierarchical cluster analysis are used to assess the quality of the learned somatic mutation embedding, on which support vector machine models are used to accurately classify tumor subtypes. Conclusions: The learned latent space maps the original samples in a much lower dimension while keeping the biological signals from the original tumor samples. This pipeline and the resulting embedding allows an easier exploration of the heterogeneity within and across tumor types and to perform an accurate classification of tumor samples in the pan-cancer somatic mutation landscape.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
BioMed Central
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOENCODER
dc.subject
CANCER GENOMICS
dc.subject
KERNEL LEARNING
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Pan-cancer Somatic Mutation Embedding using Autoencoders
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-20T19:55:00Z
dc.journal.volume
20
dc.journal.number
1
dc.journal.pagination
1-10
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Palazzo, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Beauseroy, Pierre. Université de Technologie de Troyes; Francia
dc.description.fil
Fil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
dc.journal.title
BMC Bioinformatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3298-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1186/s12859-019-3298-z
Archivos asociados