Mostrar el registro sencillo del ítem
dc.contributor.author
Gómez, Julián Luis
dc.contributor.author
Velis, Danilo Ruben
dc.date.available
2021-02-02T19:01:57Z
dc.date.issued
2019-05-01
dc.identifier.citation
Gómez, Julián Luis; Velis, Danilo Ruben; Spectral structure-oriented filtering of seismic data with self-adaptive paths; Society of Exploration Geophysicists; Geophysics; 84; 5; 1-5-2019; V271-V280
dc.identifier.issn
0016-8033
dc.identifier.uri
http://hdl.handle.net/11336/124513
dc.description.abstract
We have developed an algorithm to perform structure-oriented filtering (SOF) in 3D seismic data by learning the data structure in the frequency domain. The method, called spectral SOF (SSOF), allows us to enhance the signal structures in the f-x-y domain by running a 1D edge-preserving filter along curvilinear self-adaptive trajectories that connect points of similar characteristics. These self-adaptive paths are given by the eigenvectors of the smoothed structure tensor, which are easily computed using closed-form expressions. SSOF relies on a few parameters that are easily tuned and on simple 1D convolutions for tensor calculation and smoothing. It is able to process a 3D data volume with a 2D strategy using basic 1D edge-preserving filters. In contrast to other SOF techniques, such as anisotropic diffusion, anisotropic smoothing, and plane-wave prediction, SSOF does not require any iterative process to reach the denoised result. We determine the performance of SSOF using three public domain field data sets, which are subsets of the well-known Waipuku, Penobscot, and Teapot surveys. We use the Waipuku subset to indicate the signal preservation of the method in good-quality data when mostly background random noise is present. Then, we use the Penobscot subset to illustrate random noise and footprint signature attenuation, as well as to show how faults and fractures are improved. Finally, we analyze the Teapot stacked and depth-migrated subsets to show random and coherent noise removal, leading to an improvement of the volume structural details and overall lateral continuity. The results indicate that random noise, footprints, and other artifacts can be successfully suppressed, enhancing the delineation of geologic structures and seismic horizons and preserving the original signal bandwidth.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society of Exploration Geophysicists
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ALGORITHM
dc.subject
FILTERING
dc.subject
FREQUENCY-DOMAIN
dc.subject
SIGNAL PROCESSING
dc.subject.classification
Geoquímica y Geofísica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Spectral structure-oriented filtering of seismic data with self-adaptive paths
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-01-27T19:14:13Z
dc.journal.volume
84
dc.journal.number
5
dc.journal.pagination
V271-V280
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Tulsa, OK
dc.description.fil
Fil: Gómez, Julián Luis. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Velis, Danilo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
dc.journal.title
Geophysics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/geo2018-0788.1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1190/geo2018-0788.1
Archivos asociados