Artículo
Modeling tumorspheres reveals cancer stem cell niche building and plasticity
Fecha de publicación:
11/2019
Editorial:
Elsevier Science
Revista:
Physica A: Statistical Mechanics and its Applications
ISSN:
0378-4371
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Cancer stem cells have been shown to be critical to the development of a variety of solid cancers. The precise interplay mechanisms between cancer stem cells and the rest of a tissue are still not elucidated. To shed light on the interactions between stem and non-stem cancer cell populations we develop a two-population mathematical model, which is suitable to describe tumorsphere growth. Both interspecific and intraspecific interactions, mediated by the microenvironment, are included. We show that there is a tipping point, characterized by a transcritical bifurcation, where a purely non-stem cell attractor is replaced by a new attractor that contains both stem and differentiated cancer cells. The model is then applied to describe the outcome of a recent experiment. This description reveals that, while the intraspecific interactions are inhibitory, the interspecific interactions stimulate growth. This can be understood in terms of stem cells needing differentiated cells to reinforce their niches, and phenotypic plasticity favoring the de-differentiation of differentiated cells into cancer stem cells. We posit that this is a consequence of the deregulation of the quorum sensing that maintains homeostasis in healthy tissues.
Palabras clave:
CANCER STEM CELL
,
MATHEMATICAL MODEL
,
PLASTICITY
,
SPHEROID
,
TUMORSPHERE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Benitez, Lucia; Barberis, Lucas Miguel; Condat, Carlos; Modeling tumorspheres reveals cancer stem cell niche building and plasticity; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 533; 11-2019; 1-18; 121906
Compartir
Altmétricas