Mostrar el registro sencillo del ítem

dc.contributor.author
Chesñevar, Carlos Ivan  
dc.contributor.author
González, María Paula  
dc.contributor.author
Grosse, Kathrin  
dc.contributor.author
Maguitman, Ana Gabriela  
dc.date.available
2017-02-02T21:20:53Z  
dc.date.issued
2013-08  
dc.identifier.citation
Chesñevar, Carlos Ivan; González, María Paula; Grosse, Kathrin; Maguitman, Ana Gabriela; A First Approach to Mining Opinions as Multisets through Argumentation; Springer; Lecture Notes In Computer Science; 8068; 8-2013; 195-209  
dc.identifier.issn
0302-9743  
dc.identifier.uri
http://hdl.handle.net/11336/12415  
dc.description.abstract
Web 2.0 technologies have resulted in an exponential growth of text-based opinions coming from different sources (such as online news media, microblogging platforms, social networks, online review systems, etc.). The assessment of such opinions has gained considerable interest within several research communities in Computer Science, particularly in the context of modelling decision making processes. In this context, the scientific study of emotions in opinions associated with a given topic has become particularly relevant. Some approaches for assessing emotions in text-based opinions have been developed, resulting in promising software tools for sentiment analysis. In spite of the existence of such tools, assessing and contrasting text-based opinions is indeed a difficult task. On the one hand, complex opinions are built in many cases bottom up, emerging by aggregation from individual opinions posted online. On the other hand, contradictory and potentially inconsistent information might arise when contrasting such complex opinions. This article introduces an argument-based framework which allows to mine text-based opinions based on incrementally generated topics along with partially-ordered features, which provide a multidimensional comparison criterion. Given a topic, we will model an atomic opinion supporting it as a multiset (or bag) of terms. Atomic opinions can be aggregated, and related to alternative opinions, based on expanded topics. As a result, we will be able to obtain an “opinion analysis tree”, rooted in the first original topic.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Argumentation  
dc.subject
Opinion Mining  
dc.subject
Egovernment  
dc.subject
Datamining  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A First Approach to Mining Opinions as Multisets through Argumentation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-02-02T14:05:56Z  
dc.journal.volume
8068  
dc.journal.pagination
195-209  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Chesñevar, Carlos Ivan. Universidad Nacional del Sur. Departamento de Ciencias E Ingeniería de la Computacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: González, María Paula. Universidad Nacional del Sur. Departamento de Ciencias E Ingeniería de la Computacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Grosse, Kathrin. Universit¨at Osnabrück. Institut für Kognitionswissenschaft; Alemania  
dc.description.fil
Fil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias E Ingeniería de la Computacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Lecture Notes In Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007/978-3-642-39860-5_15  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-642-39860-5_15