Mostrar el registro sencillo del ítem

dc.contributor.author
Behrends Kraemer, Filipe  
dc.contributor.author
Hallett, Paul D.  
dc.contributor.author
Morrás, Héctor José María  
dc.contributor.author
Garibaldi, Lucas Alejandro  
dc.contributor.author
Cosentino, Diego  
dc.contributor.author
Duval, Matias Ezequiel  
dc.contributor.author
Galantini, Juan  
dc.date.available
2021-01-28T15:45:40Z  
dc.date.issued
2019-12  
dc.identifier.citation
Behrends Kraemer, Filipe; Hallett, Paul D.; Morrás, Héctor José María; Garibaldi, Lucas Alejandro; Cosentino, Diego; et al.; Soil stabilisation by water repellency under no-till management for soils with contrasting mineralogy and carbon quality; Elsevier Science; Geoderma; 355; 113902; 12-2019; 1-11  
dc.identifier.issn
0016-7061  
dc.identifier.uri
http://hdl.handle.net/11336/124051  
dc.description.abstract
No-till soil management is common around the globe, but the impacts on soil structural quality varies depending on cropping practice and inherent soil properties. This study explored water repellency as a driver of soil stabilization, as affected by soil mineralogy, granulometry and organic carbon quality in three Mollisols and one Vertisol under no-till management and with different levels of cropping intensity. The studied soils were located along a west-east textural gradient in the northern part of the Pampean region of Argentina. Cropping intensity treatments evaluated in each one of the soils were: Poor Agricultural Practices (PAP) close to a monoculture, Good Agricultural Practices (GAP) involving a diverse crop rotation and more targeted inputs, and the soil in the surrounding natural environment (NE) as a reference. NE had the greatest aggregate stability (MWD) of all cropping intensities, with GAP being more stable than PAP for Mollisols and PAP being greater than GAP for the Vertisol. This trend matched the Repellency Index (Rindex), with greater Rindex associated with greater MWD, including the difference between the Mollisols and Vertisol. However, the persistence of water repellency, measured by the Water Drop Penetration Time (WDPT) test followed the trend NE > GAP>PAP regardless of soil type. The increases in Rindex and MWD were related to higher intensification as measured by the Crop Sequence Index, and decreased with greater soybean occurrence in the sequence. Both WDPT and Rindex were closely related to aggregate stability, particularly for Mollisols. These results highlight the importance of considering the inherent soil characteristics texture and mineralogy to understand aggregate stabilization mediated by water repellency. Good correlations between soil water repellency, organic carbon fractions and aggregate stability were found. Under no-till, crop rotations can be altered to increase soil stability by inducing greater water repellency in the soils. The findings suggest that water repellency is a major property influencing soil structure stabilization, thus providing a useful quality indicator.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MOLLISOLS  
dc.subject
REPELLENCY INDEX  
dc.subject
SOIL QUALITY  
dc.subject
VERTISOLS  
dc.subject
WATER DROP PENETRATION TIME  
dc.subject.classification
Ciencias del Suelo  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Soil stabilisation by water repellency under no-till management for soils with contrasting mineralogy and carbon quality  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-16T18:21:33Z  
dc.journal.volume
355  
dc.journal.number
113902  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Behrends Kraemer, Filipe. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Hallett, Paul D.. University of Aberdeen; Reino Unido  
dc.description.fil
Fil: Morrás, Héctor José María. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina  
dc.description.fil
Fil: Garibaldi, Lucas Alejandro. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Cosentino, Diego. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Duval, Matias Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina  
dc.description.fil
Fil: Galantini, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina  
dc.journal.title
Geoderma  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0016706119309474  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geoderma.2019.113902