Mostrar el registro sencillo del ítem

dc.contributor.author
Guerra Hernandez, Luis Alfonso  
dc.contributor.author
Huidobro, Paloma A.  
dc.contributor.author
Cortés, Emiliano  
dc.contributor.author
Maier, Stefan A.  
dc.contributor.author
Fainstein, Alejandro  
dc.date.available
2021-01-28T12:00:20Z  
dc.date.issued
2019-06  
dc.identifier.citation
Guerra Hernandez, Luis Alfonso; Huidobro, Paloma A.; Cortés, Emiliano; Maier, Stefan A.; Fainstein, Alejandro; Resonant Far- to Near-Field Channeling in Synergetic Multiscale Antennas; American Chemical Society; ACS Photonics; 6; 6; 6-2019; 1466-1473  
dc.identifier.issn
2330-4022  
dc.identifier.uri
http://hdl.handle.net/11336/124004  
dc.description.abstract
Enhancing light-molecule interactions requires the efficient transfer of energy between the laboratory macroscale and the molecule nanoscale. Multiscale designs have been proposed as a means to efficiently connect these two worlds. Metallic sphere-segment void (SSV) cavities constitute plasmonic substrates in which light wavelength scale cavity-like modes and nanoscale roughness operate in conjunction as a multiscale antenna to provide larger surface-enhanced Raman scattering efficiency than the two mechanisms considered separately. We study the selective resonant coupling to cavity modes with different spatial distributions in SSV arrays with tailored nanoscale roughness. Cavity modes that are spatially more confined to the surface are demonstrated to lead to more efficient channeling of energy from the far to the near field, a synergy that scales with the degree of roughness. Finite-element modeling of the spatially varying local fields in rough SSV arrays allows for a microscopic description of the results, opening promising paths for the design of spatially and spectrally optimized multiscale antennas for efficient sensing with far- to near-field channeling of light.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTISCALE ANTENNAS  
dc.subject
PLASMONIC SUBSTRATES  
dc.subject
ROUGHNESS  
dc.subject
SENSING  
dc.subject
SPHERE-SEGMENT VOID ARRAYS  
dc.subject
SURFACE-ENHANCED RAMAN SPECTROSCOPY  
dc.subject.classification
Óptica  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Resonant Far- to Near-Field Channeling in Synergetic Multiscale Antennas  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-16T18:23:39Z  
dc.journal.volume
6  
dc.journal.number
6  
dc.journal.pagination
1466-1473  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Guerra Hernandez, Luis Alfonso. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Huidobro, Paloma A.. Imperial College London; Reino Unido  
dc.description.fil
Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina  
dc.journal.title
ACS Photonics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsphotonics.9b00120