Mostrar el registro sencillo del ítem

dc.contributor.author
Ferretti, Edgardo  
dc.contributor.author
Errecalde, Marcelo  
dc.contributor.author
Garcia, Alejandro Javier  
dc.contributor.author
Simari, Guillermo Ricardo  
dc.date.available
2017-02-02T20:54:38Z  
dc.date.issued
2014-06  
dc.identifier.citation
Ferretti, Edgardo; Errecalde, Marcelo ; Garcia, Alejandro Javier; Simari, Guillermo Ricardo; A Possibilistic Defeasible Logic Programming Approach to Argumentation-Based Decision Making; Taylor & Francis; Journal Of Experimental And Theoretical Artificial Intelligence; 26; 4; 6-2014; 519-550  
dc.identifier.issn
0952-813X  
dc.identifier.uri
http://hdl.handle.net/11336/12390  
dc.description.abstract
The development of symbolic approaches to decision-making has become an evergrowing research line in artificial intelligence; argumentation has contributed to that with its unique strengths. Following this trend, this article proposes a general-purpose decision framework based on argumentation. Given a set of alternatives posed to the decisionmaker, the framework represents the agent’s preferences and knowledge by an epistemic component developed using possibilistic defeasible logic programming. The reasons by which a particular alternative is deemed better than another are explicitly considered in the argumentation process involved in warranting information from the epistemic component. The information warranted by the dialectical process is then used in decision rules that implement the agent’s general decision-making policy. Essentially, decision rules establish patterns of behaviour of the agent specifying under which conditions a set of alternatives will be considered acceptable; moreover, a methodology for programming the agent’s epistemic component is defined. It is demonstrated that programming the agent’s epistemic component following this methodology exhibits some interesting properties with respect to the selected alternatives; also, when all the relevantinformation regarding the agent’s preferences is specified, its choice behaviour coincides with respect to the optimum preference derived from a rational preference relation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Non-Monotonic Reasoning  
dc.subject
Argumentation  
dc.subject
Possibilistic Defeasible Logic  
dc.subject
Programming  
dc.subject
Decision Making  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Possibilistic Defeasible Logic Programming Approach to Argumentation-Based Decision Making  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-02-02T14:07:38Z  
dc.journal.volume
26  
dc.journal.number
4  
dc.journal.pagination
519-550  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ferretti, Edgardo. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Errecalde, Marcelo . Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Garcia, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Simari, Guillermo Ricardo. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina  
dc.journal.title
Journal Of Experimental And Theoretical Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/0952813X.2014.921733  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/0952813X.2014.921733