Artículo
Emerging trends in metallicity and lithium properties of debris disc stars
Chavero, Carolina Andrea
; Reza, R. de la; Ghezzi, L.; Andrés, F. Llorente de; Brunelli, María Cecilia Pereira; Giuppone, Cristian Andrés
; Pinzón, G.
Fecha de publicación:
08/2019
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Dwarf stars with debris discs and planets appear to be excellent laboratories to study the core accretion theory of planets formation. These systems are however, insufficiently studied. In this paper we present the main metallicity and lithium abundance properties of these stars together with stars with only debris discs and stars with only planets. Stars without detected planets or discs are also considered. The analysed sample is formed by main-sequence FGK field single stars. Apart from the basic stellar parameters, we include the use of dusty discs masses. The main results show for the first time that the dust mass of debris disc stars with planets correlate with metallicity. We confirm that these disc dust masses are related to their central stellar masses. Separately, the masses of stars and those of planets also correlate with metallicity. We conclude that two conditions are necessary to form giant planets: to have a sufficient metallicity and also a sufficient protoplanetary mass of gas and dust. The debris discs masses of stars without giant planets do not correlate with metallicity, because they do not fulfil these two conditions. Concerning lithium, by adopting a stellar model for lithium depletion based on a strong interaction between the star and a protoplanetary disc, we found that in agreement with the model predictions, observations indicate that the main lithium depletion occurs during this initial protoplanetary evolution stage. We show that the ultimately lithium depletion is independent of the presence or absence of planets and appears to be only age dependent.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IATE)
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Citación
Chavero, Carolina Andrea; Reza, R. de la; Ghezzi, L.; Andrés, F. Llorente de; Brunelli, María Cecilia Pereira; et al.; Emerging trends in metallicity and lithium properties of debris disc stars; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 487; 3; 8-2019; 3162-3177
Compartir
Altmétricas