Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates

Ferrero, Ezequiel E.Icon ; Jagla, Eduardo AlbertoIcon
Fecha de publicación: 10/2019
Editorial: Royal Society of Chemistry
Revista: Soft Matter
ISSN: 1744-683X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

We analyze the behavior of different elastoplastic models approaching the yielding transition. We propose two kinds of rules for the local yielding events: Yielding occurs above the local threshold either at a constant rate or with a rate that increases as the square root of the stress excess. We establish a family of "static" universal critical exponents which do not depend on this dynamic detail of the model rules: In particular, the exponents for the avalanche size distribution P(S) ∼ S-τSf(S/Ldf) and the exponents describing the density of sites at the verge of yielding, which we find to be of the form P(x) ≃ P(0) + xθ with P(0) ∼ L-a controlling the extremal statistics. On the other hand, we discuss "dynamical" exponents that are sensitive to the local yielding rule. We find that, apart form the dynamical exponent z controlling the duration of avalanches, also the flowcurve's (inverse) Herschel-Bulkley exponent β ( ∼ (σ-σc)β) enters in this category, and is seen to differ in ½ between the two yielding rate cases. We give analytical support to this numerical observation by calculating the exponent variation in the Hébraud-Lequeux model and finding an identical shift. We further discuss an alternative mean-field approximation to yielding only based on the so-called Hurst exponent of the accumulated mechanical noise signal, which gives good predictions for the exponents extracted from simulations of fully spatial models.
Palabras clave: Amorphous Solids , Yielding Transition , Elastoplastic Models , Universality
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.244Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/123870
URL: http://xlink.rsc.org/?DOI=C9SM01073D
DOI: http://dx.doi.org/10.1039/C9SM01073D
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Citación
Ferrero, Ezequiel E.; Jagla, Eduardo Alberto; Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates; Royal Society of Chemistry; Soft Matter; 15; 44; 10-2019; 9041-9055
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES