Artículo
Variational reduction of Hamiltonian systems with general constraints
Fecha de publicación:
10/2019
Editorial:
Elsevier Science
Revista:
Journal Of Geometry And Physics
ISSN:
0393-0440
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the Hamiltonian formalism, and in the presence of a symmetry Lie group, a variational reduction procedure has already been developed for Hamiltonian systems without constraints. In this paper we present a procedure of the same kind, but for the entire class of the higher order constrained systems (HOCS), described in the Hamiltonian formalism. Last systems include the standard and generalized nonholonomic Hamiltonian systems as particular cases. When restricted to Hamiltonian systems without constraints, our procedure gives rise exactly to the so-called Hamilton-Poincaré equations, as expected. In order to illustrate the procedure, we study in detail the case in which both the configuration space of the system and the involved symmetry define a trivial principal bundle.
Palabras clave:
CONSTRAINT
,
HAMILTONIAN
,
REDUCTION
,
SYMMETRY
,
SYSTEMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela; Variational reduction of Hamiltonian systems with general constraints; Elsevier Science; Journal Of Geometry And Physics; 144; 10-2019; 209-234
Compartir
Altmétricas