Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine learning on difference image analysis: A comparison of methods for transient detection

Sánchez, Bruno OrlandoIcon ; Dominguez Romero, Mariano Javier de LeonIcon ; Lares Harbin Latorre, MarceloIcon ; Beroiz, Martin Isidro Ramon; Cabral, Juan BautistaIcon ; Gurovich, SebastianIcon ; Quiñones, Cecilia; Artola, Rodolfo Alfredo; Colazo, Carlos A.; Schneiter, Ernesto MatíasIcon ; Girardini, Carla; Tornatore, Marina; Nilo Castellón, José Luis; Garcia Lambas, Diego RodolfoIcon ; Díaz, Mario Coma
Fecha de publicación: 07/2019
Editorial: Elsevier
Revista: Astronomy and Computing
ISSN: 2213-1337
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

We present a comparison of several Difference Image Analysis (DIA) techniques, in combination with Machine Learning (ML) algorithms, applied to the identification of optical transients associated to gravitational wave events. Each technique is assessed based on the scoring metrics of Precision, Recall, and their harmonic mean F1, measured on the DIA results as standalone techniques, and also in the results after the application of ML algorithms, on transient source injections over simulated and real data. These simulations cover a wide range of instrumental configurations, as well as a variety of scenarios of observation conditions, by exploring a multi dimensional set of relevant parameters, allowing us to extract general conclusions related to the identification of transient astrophysical events. The newest subtraction techniques, and particularly the methodology published in Zackay et al., (2016) are implemented on an Open Source Python package, named properimage, suitable for many other astronomical image analyses. This together, with the ML libraries we describe, provides an effective transient detection software pipeline. Here we study the effects of the different ML techniques, and the relative feature importances for classification of transient candidates, and propose an optimal combined strategy. This constitutes the basic elements of pipelines that could be applied in searches of electromagnetic counterparts to GW sources.
Palabras clave: DATA ANALYSIS , IMAGE PROCESSING , METHODS , TECHNIQUES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.813Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/123804
URL: https://www.sciencedirect.com/science/article/pii/S2213133718300982?via%3Dihub
URL: https://arxiv.org/abs/1812.10518
DOI: https://doi.org/10.1016/j.ascom.2019.05.002
Colecciones
Articulos(IATE)
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Citación
Sánchez, Bruno Orlando; Dominguez Romero, Mariano Javier de Leon; Lares Harbin Latorre, Marcelo; Beroiz, Martin Isidro Ramon; Cabral, Juan Bautista; et al.; Machine learning on difference image analysis: A comparison of methods for transient detection; Elsevier; Astronomy and Computing; 28; 7-2019; 1-17; 100284
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES