Artículo
Finite element approximations for fractional evolution problems
Fecha de publicación:
30/07/2019
Editorial:
De Gruyter
Revista:
Fractional Calculus and Applied Analysis
ISSN:
1311-0454
e-ISSN:
1314-2224
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This work introduces and analyzes a finite element scheme for evolution problems involving fractional-in-time and in-space differentiation operators up to order two. The left-sided fractional-order derivative in time we consider is employed to represent memory effects, while a nonlocal differentiation operator in space accounts for long-range dispersion processes. We discuss well-posedness and obtain regularity estimates for the evolution problems under consideration. The discrete scheme we develop is based on piecewise linear elements for the space variable and a convolution quadrature for the time component. We illustrate the method's performance with numerical experiments in one-and two-dimensional domains.
Palabras clave:
CAPUTO DERIVATIVE
,
EVOLUTION PROBLEMS
,
FRACTIONAL LAPLACIAN
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Acosta, Gabriel; Mastroberti Bersetche, Francisco Vicente; Borthagaray Peradotto, Juan Pablo; Finite element approximations for fractional evolution problems; De Gruyter; Fractional Calculus and Applied Analysis; 22; 3; 30-7-2019; 767-794
Compartir
Altmétricas