Mostrar el registro sencillo del ítem
dc.contributor.author
Oddi, Facundo José

dc.contributor.author
Miguez, Fernando E.
dc.contributor.author
Ghermandi, Luciana

dc.contributor.author
Bianchi, Lucas Osvaldo

dc.contributor.author
Garibaldi, Lucas Alejandro

dc.date.available
2021-01-22T18:43:12Z
dc.date.issued
2019-08-15
dc.identifier.citation
Oddi, Facundo José; Miguez, Fernando E.; Ghermandi, Luciana; Bianchi, Lucas Osvaldo; Garibaldi, Lucas Alejandro; A nonlinear mixed-effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example; Wiley; Ecology and Evolution; 9; 18; 15-8-2019; 10225-10240
dc.identifier.uri
http://hdl.handle.net/11336/123501
dc.description.abstract
Increasingly, often ecologist collects data with nonlinear trends, heterogeneous variances, temporal correlation, and hierarchical structure. Nonlinear mixed-effects models offer a flexible approach to such data, but the estimation and interpretation of these models present challenges, partly associated with the lack of worked examples in the ecological literature. We illustrate the nonlinear mixed-effects modeling approach using temporal dynamics of vegetation moisture with field data from northwestern Patagonia. This is a Mediterranean-type climate region where modeling temporal changes in live fuel moisture content are conceptually relevant (ecological theory) and have practical implications (fire management). We used this approach to answer whether moisture dynamics varies among functional groups and aridity conditions, and compared it with other simpler statistical models. The modeling process is set out “step-by-step”: We start translating the ideas about the system dynamics to a statistical model, which is made increasingly complex in order to include different sources of variability and correlation structures. We provide guidelines and R scripts (including a new self-starting function) that make data analyses reproducible. We also explain how to extract the parameter estimates from the R output. Our modeling approach suggests moisture dynamic to vary between grasses and shrubs, and between grasses facing different aridity conditions. Compared to more classical models, the nonlinear mixed-effects model showed greater goodness of fit and met statistical assumptions. While the mixed-effects approach accounts for spatial nesting, temporal dependence, and variance heterogeneity; the nonlinear function allowed to model the seasonal pattern. Parameters of the nonlinear mixed-effects model reflected relevant ecological processes. From an applied perspective, the model could forecast the time when fuel moisture becomes critical to fire occurrence. Due to the lack of worked examples for nonlinear mixed-effects models in the literature, our modeling approach could be useful to diverse ecologists dealing with complex data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CORRELATION STRUCTURES
dc.subject
HIERARCHICAL MODELING
dc.subject
NONLINEARITY
dc.subject
SPATIO-TEMPORAL VARIABILITY
dc.subject
TIME SERIES
dc.subject.classification
Ecología

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A nonlinear mixed-effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-16T18:21:44Z
dc.identifier.eissn
2045-7758
dc.journal.volume
9
dc.journal.number
18
dc.journal.pagination
10225-10240
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Oddi, Facundo José. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Miguez, Fernando E.. University of Iowa; Estados Unidos
dc.description.fil
Fil: Ghermandi, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
dc.description.fil
Fil: Bianchi, Lucas Osvaldo. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Garibaldi, Lucas Alejandro. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Ecology and Evolution
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/ece3.5543
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.5543
Archivos asociados