Mostrar el registro sencillo del ítem

dc.contributor.author
Martínez, Emanuel Alberto  
dc.contributor.author
Fuhr, Javier Daniel  
dc.contributor.author
Grizzi, Oscar  
dc.contributor.author
Sánchez, Esteban  
dc.contributor.author
Cantero, Esteban Daniel  
dc.date.available
2021-01-22T18:38:53Z  
dc.date.issued
2019-05-06  
dc.identifier.citation
Martínez, Emanuel Alberto; Fuhr, Javier Daniel; Grizzi, Oscar; Sánchez, Esteban; Cantero, Esteban Daniel; Growth of Germanene on Al(111) Hindered by Surface Alloy Formation; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 6-5-2019; 12910-12918  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/123500  
dc.description.abstract
Obtaining pure group IV 2D films on well-behaved substrates is at present a major goal in materials science and of great interest for the associated industries. This goal still represents a challenge in surface science because often these materials tend to form alloys. As a consequence, some of the proposed 2D films resulted in topics of controversy regarding the top-layer elemental composition and interpretation of the honeycomb patterns measured by STM. Very recently, germanene on Al(111) was proposed to be a system having a larger gap than silicene and a quantum-spin Hall effect. This system was studied by several techniques including scanning tunnel microscopy, low-energy electron diffraction, photoemission, and density functional theory. None of the techniques used until now have the capability to detect unambiguously the presence of substrate atoms within the ultrathin film (i.e., separated from the corresponding substrate), thus leaving open the question of the composition or purity of the layer. Here we follow previous guidelines to grow a Ge film on Al(111) with the expected 3 × 3 arrangement that was assumed to be characteristic of germanene, and then we study in situ the properties of the films with ion scattering and recoiling spectrometry, a technique particularly suited for determining the elemental composition of the last surface layer. Our results unambiguously show the formation of a mixture of well-ordered Ge and Al atoms for all of the temperatures and conditions tested, in clear disagreement with the pure single germanene layer proposed in previous works. These conclusions led us to investigate by DFT calculations other possible structures compatible with our present results and the previously reported ones. The most favorable alloyed structures obtained by DFT were then compared with new I-V low-energy electron diffraction curves, and from this comparison, a top surface model composed of five Ge atoms and three Al atoms is proposed to replace the germanene model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GERMANENE  
dc.subject
SURFACE ALLOY  
dc.subject
AL(111)  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Growth of Germanene on Al(111) Hindered by Surface Alloy Formation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-16T18:22:21Z  
dc.journal.volume
123  
dc.journal.number
20  
dc.journal.pagination
12910-12918  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Martínez, Emanuel Alberto. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina  
dc.description.fil
Fil: Fuhr, Javier Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina  
dc.description.fil
Fil: Grizzi, Oscar. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina  
dc.description.fil
Fil: Sánchez, Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina  
dc.description.fil
Fil: Cantero, Esteban Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b02614  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.9b02614