Mostrar el registro sencillo del ítem
dc.contributor.author
Rafo, Maria
dc.contributor.author
Aparicio, Juan Pablo
dc.date.available
2021-01-22T01:58:44Z
dc.date.issued
2020-02
dc.identifier.citation
Rafo, Maria; Aparicio, Juan Pablo; Simple epidemic network model for highly heterogeneous populations; Academic Press Ltd - Elsevier Science Ltd; Journal of Theoretical Biology; 486; 2-2020; 1-21; 110056
dc.identifier.issn
0022-5193
dc.identifier.uri
http://hdl.handle.net/11336/123413
dc.description.abstract
Network models for disease transmission and dynamics are popular because they are among the simplest agent-based models. Highly heterogeneous populations (in the number of contacts) may be modeled by networks with long-tailed degree distributions for which the variance is much greater than the mean degree. An example is given by scale-free networks where the degree distribution follows a power law. In these type of networks there is not a typical degree. Some nodes may have low representation in the population but are key to drive disease transmission. Coarse graining may be used to simplify these complex networks. In this work we present a simple model consisting in of a network where nodes have only two possible degrees, a low degree close to the mean degree and a high degree about ten times the mean degree. We show that in spite of this extreme simplification, main features of disease dynamics in scale-free networks are well captured by our model.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Ltd - Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
CORE-GROUP MODEL
dc.subject
DISEASE DYNAMICS
dc.subject
SCALE-FREE NETWORKS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Simple epidemic network model for highly heterogeneous populations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-18T20:44:32Z
dc.journal.volume
486
dc.journal.pagination
1-21; 110056
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Rafo, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
dc.description.fil
Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
dc.journal.title
Journal of Theoretical Biology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022519319304254
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jtbi.2019.110056
Archivos asociados