Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation

Waisman, ArielIcon ; la Greca, Alejandro DamiánIcon ; Möbbs, Alan MiqueasIcon ; Scarafia, Maria AgustinaIcon ; Santín Velazque, Natalia LucíaIcon ; Neiman, GabrielIcon ; Moro, Lucía NataliaIcon ; Luzzani, Carlos DanielIcon ; Sevlever, Gustavo; Guberman, Alejandra SoniaIcon ; Miriuka, Santiago GabrielIcon
Fecha de publicación: 09/04/2019
Editorial: Cell Press
Revista: Stem Cell Reports
ISSN: 2213-6711
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Bioquímica y Biología Molecular

Resumen

Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recognition with high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNN with transmitted light microscopy images to distinguish pluripotent stem cells from early differentiating cells. We induced differentiation of mouse embryonic stem cells to epiblast-like cells and took images at several time points from the initial stimulus. We found that the networks can be trained to recognize undifferentiated cells from differentiating cells with an accuracy higher than 99%. Successful prediction started just 20 min after the onset of differentiation. Furthermore, CNNs displayed great performance in several similar pluripotent stem cell (PSC) settings, including mesoderm differentiation in human induced PSCs. Accurate cellular morphology recognition in a simple microscopic set up may have a significant impact on how cell assays are performed in the near future. In this article, Miriuka and colleagues show that deep learning convolutional neural networks can be trained to accurately classify light microscopy images of pluripotent stem cells from those of early differentiating cells, only minutes after the differentiation stimulus. These algorithms thus provide novel tools to quantitatively characterize subtle changes in cell morphology.
Palabras clave: ARTIFICIAL INTELLIGENCE , CELL IMAGING , COMPUTER VISION , DEEP LEARNING , DIFFERENTIATION , EMBRYONIC STEM CELLS , LIGHT TRANSMISSION MICROSCOPY , MACHINE LEARNING , NEURAL NETWORKS , PLURIPOTENT STEM CELLS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.179Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/123010
DOI: https://doi.org/10.1016/j.stemcr.2019.02.004
URL: https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(19)30052-9
URL: https://www.sciencedirect.com/science/article/pii/S2213671119300529?via%3Dihub
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Waisman, Ariel; la Greca, Alejandro Damián; Möbbs, Alan Miqueas; Scarafia, Maria Agustina; Santín Velazque, Natalia Lucía; et al.; Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation; Cell Press; Stem Cell Reports; 12; 4; 9-4-2019; 845-859
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 101
Descargas: 135

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES