Artículo
Evaluation of the particle geometry and interphase influence on the filler-matrix debonding process
Fecha de publicación:
14/06/2019
Editorial:
IOP Publishing
Revista:
Material Research Express
ISSN:
2053-1591
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Incorporation of rigid fillers into polymer matrices represents a widely used technique to obtain improved performance. The mechanical behavior finally obtained is closely related to a wide range of involved factors (filler type and size, internal structure, filler-matrix interaction, among others) and to activated dissipative mechanisms (debonding, plastic void growth, crazing, matrix yielding, etc). In this work, a debonding strength approach was applied for rigid particles (spherical, elliptical and fiber) surrounded by an interphase. The effect of interphase mechanical properties and thickness on the debonding process was investigated. The obtained results suggested a significant influence of the transition rigidity. In general, stiffer interphases promoted higher critical strength values. On the other hand, particle surrounded by a softer transition region displayed higher dissipated energy for all examined particle, except for spheres.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Perez, Ezequiel Martin; Lauke, B.; Evaluation of the particle geometry and interphase influence on the filler-matrix debonding process; IOP Publishing; Material Research Express; 6; 8; 14-6-2019; 1-9
Compartir
Altmétricas