Mostrar el registro sencillo del ítem
dc.contributor.author
Tommasel, Antonela
dc.contributor.author
Godoy, Daniela Lis
dc.contributor.other
Jurek Loughrey, Anna
dc.date.available
2021-01-18T16:21:01Z
dc.date.issued
2019
dc.identifier.citation
Tommasel, Antonela; Godoy, Daniela Lis; On the evaluation of community detection algorithms on heterogeneous social media data; Springer; 2019; 295-333
dc.identifier.isbn
978-3-030-01871-9
dc.identifier.uri
http://hdl.handle.net/11336/122869
dc.description.abstract
One fundamental problem in social networks is the identification of groups of elements (also known as communities) when group membership is not explicitly available. Community detection has proven to be valuable in diverse domains such as biology, social sciences and bibliometrics. Thus, several community detection techniques have been developed. Nonetheless, as real networks are very heterogenous, the question of how communities should be assessed remains open. Whilst there are several works that have analysed the performance of diverse community detection algorithms over artificial graph benchmarks, the evaluation over real social networks has received comparatively less attention. Motivated by the lack of such studies, this chapter focuses on the analysis of the performance of community detection algorithms over social media networks, and the quantification of the structural properties of the discovered communities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SOCIAL NETWORKS
dc.subject
COMMUNITY DETECTION
dc.subject
MULTI-VIEW LEARNING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the evaluation of community detection algorithms on heterogeneous social media data
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2020-11-18T21:39:30Z
dc.journal.pagination
295-333
dc.journal.pais
Suiza
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://doi.org/10.1007/978-3-030-01872-6_12
dc.conicet.paginas
343
dc.source.titulo
Linking and Mining Heterogeneous and Multi-view Data
Archivos asociados