Mostrar el registro sencillo del ítem

dc.contributor.author
Tommasel, Antonela  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.other
Jurek Loughrey, Anna  
dc.date.available
2021-01-18T16:21:01Z  
dc.date.issued
2019  
dc.identifier.citation
Tommasel, Antonela; Godoy, Daniela Lis; On the evaluation of community detection algorithms on heterogeneous social media data; Springer; 2019; 295-333  
dc.identifier.isbn
978-3-030-01871-9  
dc.identifier.uri
http://hdl.handle.net/11336/122869  
dc.description.abstract
One fundamental problem in social networks is the identification of groups of elements (also known as communities) when group membership is not explicitly available. Community detection has proven to be valuable in diverse domains such as biology, social sciences and bibliometrics. Thus, several community detection techniques have been developed. Nonetheless, as real networks are very heterogenous, the question of how communities should be assessed remains open. Whilst there are several works that have analysed the performance of diverse community detection algorithms over artificial graph benchmarks, the evaluation over real social networks has received comparatively less attention. Motivated by the lack of such studies, this chapter focuses on the analysis of the performance of community detection algorithms over social media networks, and the quantification of the structural properties of the discovered communities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SOCIAL NETWORKS  
dc.subject
COMMUNITY DETECTION  
dc.subject
MULTI-VIEW LEARNING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the evaluation of community detection algorithms on heterogeneous social media data  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-11-18T21:39:30Z  
dc.journal.pagination
295-333  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://doi.org/10.1007/978-3-030-01872-6_12  
dc.conicet.paginas
343  
dc.source.titulo
Linking and Mining Heterogeneous and Multi-view Data