Mostrar el registro sencillo del ítem

dc.contributor.author
Tommasel, Antonela  
dc.contributor.author
Godoy, Daniela Lis  
dc.date.available
2021-01-18T16:14:08Z  
dc.date.issued
2019-06  
dc.identifier.citation
Tommasel, Antonela; Godoy, Daniela Lis; Short-text learning in social media: A review; Cambridge University Press; Knowledge Engineering Review; 34; e7; 6-2019; 1-38  
dc.identifier.issn
0269-8889  
dc.identifier.uri
http://hdl.handle.net/11336/122864  
dc.description.abstract
Social networks occupy an ubiquitous and pervasive place in the life of their users. The substantial amount of content generated and shared by social networking users offers new research opportunities across a wide variety of disciplines, including media and communication studies, linguistics, sociology, psychology, information and computer sciences, or education. This situation, in combination with the continuous grow of social media data, creates an imperative need for content organisation. Thus, large-scale text learning tasks in social environments arise as one of the most relevant problems in machine learning and data mining. Interestingly, social media data poses several challenges due to its sparse, high-dimensional and large-volume characteristics. This survey reviews the field of social media data learning, focusing on classification and clustering techniques, as they are two of the most frequent learning tasks. It reviews not only new techniques that have been developed to tackle the new challenges posed by short-texts, but also how traditional techniques can be adapted to overcome such challenges. Then, open issues and research opportunities for social media data learning are discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TEXT LEARNING  
dc.subject
SOCIAL MEDIA  
dc.subject
FEATURE SELECTION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Short-text learning in social media: A review  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-18T21:22:59Z  
dc.journal.volume
34  
dc.journal.number
e7  
dc.journal.pagination
1-38  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Knowledge Engineering Review  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/http://doi.org/10.1017/S0269888919000018