Mostrar el registro sencillo del ítem

dc.contributor.author
Sanz García, Ancor  
dc.contributor.author
Pérez Romero, Miriam  
dc.contributor.author
Pastor, Jesús  
dc.contributor.author
Sola, Rafael G.  
dc.contributor.author
Vega Zelaya, Lorena  
dc.contributor.author
Vega, Gema  
dc.contributor.author
Monasterio, Fernando  
dc.contributor.author
Torrecilla, Carmen  
dc.contributor.author
Pulido, Paloma  
dc.contributor.author
Ortega, Guillermo José  
dc.date.available
2021-01-18T13:18:48Z  
dc.date.issued
2019-04  
dc.identifier.citation
Sanz García, Ancor; Pérez Romero, Miriam; Pastor, Jesús; Sola, Rafael G.; Vega Zelaya, Lorena; et al.; Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach; IOP Publishing; Journal of Neural Engineering; 16; 2; 4-2019; 1-11  
dc.identifier.issn
1741-2560  
dc.identifier.uri
http://hdl.handle.net/11336/122820  
dc.description.abstract
Objective. Sedation of neurocritically ill patients is one of the most challenging situation in ICUs. Quantitative knowledge on the sedation effect on brain activity in that complex scenario could help to uncover new markers for sedation assessment. Hence, we aim to evaluate the existence of changes of diverse EEG-derived measures in deeply-sedated (RASS-Richmond agitation-sedation scale -4 and -5) neurocritically ill patients, and also whether sedation doses are related with those eventual changes. Approach. We performed an observational prospective cohort study in the intensive care unit of the Hospital de la Princesa. Twenty-six adult patients suffered from traumatic brain injury and subarachnoid hemorrhage were included in the present study. Long-term continuous electroencephalographic (EEG) recordings (2141 h) and hourly annotated information were used to determine the relationship between intravenous sedation infusion doses and network and spectral EEG measures. To do that, two different strategies were followed: assessment of the statistical dependence between both variables using the Spearman correlation rank and by performing an automatic classification method based on a machine learning algorithm. Main results. More than 60% of patients presented a correlation greater than 0.5 in at least one of the calculated EEG measures with the sedation dose. The automatic classification method presented an accuracy of 84.3% in discriminating between different sedation doses. In both cases the nodes' degree was the most relevant measurement. Significance. The results presented here provide evidences of brain activity changes during deep sedation linked to sedation doses. Particularly, the capability of network EEG-derived measures in discriminating between different sedation doses could be the framework for the development of accurate methods for sedation levels assessment.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRAIN NETWORKS  
dc.subject
EEG  
dc.subject
ICU  
dc.subject
MACHINE LEARNING  
dc.subject
SEDATION  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-08T14:14:46Z  
dc.journal.volume
16  
dc.journal.number
2  
dc.journal.pagination
1-11  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España  
dc.description.fil
Fil: Pérez Romero, Miriam. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España  
dc.description.fil
Fil: Pastor, Jesús. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España  
dc.description.fil
Fil: Sola, Rafael G.. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España  
dc.description.fil
Fil: Vega Zelaya, Lorena. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España  
dc.description.fil
Fil: Vega, Gema. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España  
dc.description.fil
Fil: Monasterio, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España  
dc.description.fil
Fil: Torrecilla, Carmen. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España  
dc.description.fil
Fil: Pulido, Paloma. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España  
dc.description.fil
Fil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Neural Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/ab039f/data  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-2552/ab039f