Mostrar el registro sencillo del ítem
dc.contributor.author
Sanz García, Ancor
dc.contributor.author
Pérez Romero, Miriam
dc.contributor.author
Pastor, Jesús
dc.contributor.author
Sola, Rafael G.
dc.contributor.author
Vega Zelaya, Lorena
dc.contributor.author
Vega, Gema
dc.contributor.author
Monasterio, Fernando
dc.contributor.author
Torrecilla, Carmen
dc.contributor.author
Pulido, Paloma
dc.contributor.author
Ortega, Guillermo José
dc.date.available
2021-01-18T13:18:48Z
dc.date.issued
2019-04
dc.identifier.citation
Sanz García, Ancor; Pérez Romero, Miriam; Pastor, Jesús; Sola, Rafael G.; Vega Zelaya, Lorena; et al.; Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach; IOP Publishing; Journal of Neural Engineering; 16; 2; 4-2019; 1-11
dc.identifier.issn
1741-2560
dc.identifier.uri
http://hdl.handle.net/11336/122820
dc.description.abstract
Objective. Sedation of neurocritically ill patients is one of the most challenging situation in ICUs. Quantitative knowledge on the sedation effect on brain activity in that complex scenario could help to uncover new markers for sedation assessment. Hence, we aim to evaluate the existence of changes of diverse EEG-derived measures in deeply-sedated (RASS-Richmond agitation-sedation scale -4 and -5) neurocritically ill patients, and also whether sedation doses are related with those eventual changes. Approach. We performed an observational prospective cohort study in the intensive care unit of the Hospital de la Princesa. Twenty-six adult patients suffered from traumatic brain injury and subarachnoid hemorrhage were included in the present study. Long-term continuous electroencephalographic (EEG) recordings (2141 h) and hourly annotated information were used to determine the relationship between intravenous sedation infusion doses and network and spectral EEG measures. To do that, two different strategies were followed: assessment of the statistical dependence between both variables using the Spearman correlation rank and by performing an automatic classification method based on a machine learning algorithm. Main results. More than 60% of patients presented a correlation greater than 0.5 in at least one of the calculated EEG measures with the sedation dose. The automatic classification method presented an accuracy of 84.3% in discriminating between different sedation doses. In both cases the nodes' degree was the most relevant measurement. Significance. The results presented here provide evidences of brain activity changes during deep sedation linked to sedation doses. Particularly, the capability of network EEG-derived measures in discriminating between different sedation doses could be the framework for the development of accurate methods for sedation levels assessment.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN NETWORKS
dc.subject
EEG
dc.subject
ICU
dc.subject
MACHINE LEARNING
dc.subject
SEDATION
dc.subject.classification
Otras Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-01-08T14:14:46Z
dc.journal.volume
16
dc.journal.number
2
dc.journal.pagination
1-11
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
dc.description.fil
Fil: Pérez Romero, Miriam. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
dc.description.fil
Fil: Pastor, Jesús. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
dc.description.fil
Fil: Sola, Rafael G.. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España
dc.description.fil
Fil: Vega Zelaya, Lorena. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
dc.description.fil
Fil: Vega, Gema. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
dc.description.fil
Fil: Monasterio, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
dc.description.fil
Fil: Torrecilla, Carmen. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
dc.description.fil
Fil: Pulido, Paloma. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España
dc.description.fil
Fil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Neural Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/ab039f/data
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-2552/ab039f
Archivos asociados