Mostrar el registro sencillo del ítem

dc.contributor.author
Looby, Nikita T.  
dc.contributor.author
Tascon, Marcos  
dc.contributor.author
Acquaro, Vinicius R.  
dc.contributor.author
Reyes Garcés, Nathaly  
dc.contributor.author
Vasiljevic, Tijana  
dc.contributor.author
Gomez Rios, German Augusto  
dc.contributor.author
Wasowicz, Marcin  
dc.contributor.author
Pawliszyn, Janusz  
dc.date.available
2021-01-14T21:05:04Z  
dc.date.issued
2019-06  
dc.identifier.citation
Looby, Nikita T.; Tascon, Marcos; Acquaro, Vinicius R.; Reyes Garcés, Nathaly; Vasiljevic, Tijana; et al.; Solid phase microextraction coupled to mass spectrometry: Via a microfluidic open interface for rapid therapeutic drug monitoring; Royal Society of Chemistry; Analyst; 144; 12; 6-2019; 3721-3728  
dc.identifier.issn
0003-2654  
dc.identifier.uri
http://hdl.handle.net/11336/122804  
dc.description.abstract
Tranexamic acid (TXA) is an antifibrinolytic used during cardiac surgery that presents high inter-patient variability. High plasma concentrations have been associated with post-operative seizures. Due to the difficulties with maintaining acceptable concentrations of TXA during surgery, implementation of a point-of-care strategy for testing TXA plasma concentration would allow for close monitoring of its concentration during administration. This would facilitate timely corrections to the dosing schedule, and in effect tailor treatment for individual patient needs. In this work, a method for the rapid monitoring of TXA from plasma samples was subsequently carried out via biocompatible solid-phase microextraction (Bio-SPME) coupled directly to tandem mass spectrometry via a microfluidic open interface (MOI). MOI operates under the concept of a flow-isolated desorption volume and was designed with aims to directly hyphenate Bio-SPME to different detection and ionization systems. In addition, it allows the desorption of Bio-SPME fibers in small volumes while it concurrently continues feeding the ESI with a constant flow to minimize cross-talking and instabilities. The methodology was used to monitor six patients with varying degrees of renal dysfunction, at different time points during cardiac surgery. MOI proves to be a reliable and feasible tool for rapid therapeutic drug monitoring. Affording total times of analysis as low as 30 seconds per sample in its high throughput mode configuration while the single sample turn-around time was 15 minutes, including sample preparation. In addition, cross-validation against a standard thin film solid phase microextraction using liquid chromatography coupled to tandem mass spectrometry (TFME-LC-MS/MS) method was performed. Bland-Altman analysis was used to cross-validate the results obtained by the two methods. Data analysis demonstrated that 92% of the compared data pairs (n = 63) were distributed within the acceptable range. The data was also validated by the Passing Bablok regression, demonstrating good statistical agreement between these two methods. Finally, the currently presented method offers comparable results to the conventional liquid chromatography with acceptable RSDs, while only necessitating a fraction of the time. In this way, TXA concentration in plasma can be monitored in a close to real time throughput during surgery.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SPME-MS  
dc.subject
MICROFLUIDIC OPEN INTERFACE  
dc.subject
BIOANALYSIS  
dc.subject
TRANEXAMIC ACID  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Solid phase microextraction coupled to mass spectrometry: Via a microfluidic open interface for rapid therapeutic drug monitoring  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-16T20:03:58Z  
dc.journal.volume
144  
dc.journal.number
12  
dc.journal.pagination
3721-3728  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Looby, Nikita T.. University of Waterloo; Canadá  
dc.description.fil
Fil: Tascon, Marcos. University of Waterloo; Canadá. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina  
dc.description.fil
Fil: Acquaro, Vinicius R.. Universidade de Sao Paulo; Brasil. University of Waterloo; Canadá  
dc.description.fil
Fil: Reyes Garcés, Nathaly. Restek Corporation; Estados Unidos. University of Waterloo; Canadá  
dc.description.fil
Fil: Vasiljevic, Tijana. University of Waterloo; Canadá  
dc.description.fil
Fil: Gomez Rios, German Augusto. University of Waterloo; Canadá. Restek Corporation; Estados Unidos  
dc.description.fil
Fil: Wasowicz, Marcin. Toronto General Hospital; Canadá  
dc.description.fil
Fil: Pawliszyn, Janusz. University of Waterloo; Canadá  
dc.journal.title
Analyst  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/c9an00041k  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2019/AN/C9AN00041K