Mostrar el registro sencillo del ítem

dc.contributor.author
Autier, Lila  
dc.contributor.author
Clavreul, Anne  
dc.contributor.author
Cacicedo, Maximiliano Luis  
dc.contributor.author
Franconi, Florence  
dc.contributor.author
Sindji, Laurence  
dc.contributor.author
Rousseau, Audrey  
dc.contributor.author
Perrot, Rodolphe  
dc.contributor.author
Montero Menei, Claudia N.  
dc.contributor.author
Castro, Guillermo Raul  
dc.contributor.author
Menei, Philippe  
dc.date.available
2021-01-14T15:53:40Z  
dc.date.issued
2019-01  
dc.identifier.citation
Autier, Lila; Clavreul, Anne; Cacicedo, Maximiliano Luis; Franconi, Florence; Sindji, Laurence; et al.; A new glioblastoma cell trap for implantation after surgical resection; Elsevier; Acta Biomaterialia; 84; 1-2019; 268-279  
dc.identifier.issn
1742-7061  
dc.identifier.uri
http://hdl.handle.net/11336/122731  
dc.description.abstract
Glioblastoma (GB) is a highly infiltrative tumor, recurring, in 90% of cases, within a few centimeters of the surgical resection cavity, even with adjuvant chemo/radiotherapy. Residual GB cells left in the margins or infiltrating the brain parenchyma shelter behind the extremely fragile and sensitive brain tissue and may favor recurrence. Tools for eliminating these cells without damaging the brain microenvironment are urgently required. We propose a strategy involving the implantation, into the tumor bed after resection, of a scaffold to concentrate and trap these cells, to facilitate their destruction by targeted therapies, such as stereotactic radiosurgery. We used bacterial cellulose (BC), an easily synthesized and modifiable random nanofibrous biomaterial, to make the trap. We showed that the structure of BC membranes was ideal for trapping tumor cells and that BC implants were biocompatible with brain parenchyma. We also demonstrated the visibility of BC on magnetic resonance imaging, making it possible to follow its fate in clinical situations and to define the target volume for stereotactic radiosurgery more precisely. Furthermore, BC membranes can be loaded with chemoattractants, which were released and attracted tumor cells in vitro. This is of particular interest for trapping GB cells infiltrating tissues within a few centimeters of the resection cavity. Our data suggest that BC membranes could be a scaffold of choice for implantation after surgical resection to trap residual GB cells. Statement of Significance: Glioblastoma is a highly infiltrative tumor, recurring, in 90% of cases, within a few centimeters of the surgical resection cavity, even with adjuvant chemo/radiotherapy. Residual tumor cells left in the margins or infiltrating the brain parenchyma shelter behind the extremely fragile and sensitive brain tissue and contribute to the risk of recurrence. Finding tools to eliminate these cells without damaging the brain microenvironment is a real challenge. We propose a strategy involving the implantation, into the walls of the surgical resection cavity, of a scaffold to concentrate and trap the residual tumor cells, to facilitate their destruction by targeted therapies, such as stereotactic radiosurgery.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BACTERIAL CELLULOSE  
dc.subject
BIOMATERIAL  
dc.subject
CELL TRAP  
dc.subject
GLIOBLASTOMA  
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A new glioblastoma cell trap for implantation after surgical resection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-25T17:58:32Z  
dc.journal.volume
84  
dc.journal.pagination
268-279  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Autier, Lila. Universite de Nantes; Francia. Inserm; Francia. CHU. Département de Neurochirurgie; Francia  
dc.description.fil
Fil: Clavreul, Anne. CHU. Département de Neurochirurgie; Francia. Universite de Nantes; Francia. Inserm; Francia  
dc.description.fil
Fil: Cacicedo, Maximiliano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina  
dc.description.fil
Fil: Franconi, Florence. Université Angers; Francia  
dc.description.fil
Fil: Sindji, Laurence. Universite de Nantes; Francia. Inserm; Francia  
dc.description.fil
Fil: Rousseau, Audrey. Chu Angers; Francia. Universite de Nantes; Francia  
dc.description.fil
Fil: Perrot, Rodolphe. Université Angers; Francia  
dc.description.fil
Fil: Montero Menei, Claudia N.. Universite de Nantes; Francia. Inserm; Francia  
dc.description.fil
Fil: Castro, Guillermo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina  
dc.description.fil
Fil: Menei, Philippe. Chu Angers; Francia. Universite de Nantes; Francia  
dc.journal.title
Acta Biomaterialia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.actbio.2018.11.027  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1742706118306810