Mostrar el registro sencillo del ítem

dc.contributor.author
Pérez, Anne  
dc.contributor.author
Rossano, Stéphanie  
dc.contributor.author
Trcera, Nicolas  
dc.contributor.author
Verney Carron, Aurélie  
dc.contributor.author
Rommevaux, Céline  
dc.contributor.author
Fourdrin, Chloé  
dc.contributor.author
Agnello, Ana Carolina  
dc.contributor.author
Huguenot, David  
dc.contributor.author
Guyot, François  
dc.date.available
2021-01-14T15:40:06Z  
dc.date.issued
2019-09-30  
dc.identifier.citation
Pérez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney Carron, Aurélie; Rommevaux, Céline; et al.; Direct and indirect impact of the bacterial strain Pseudomonas aeruginosa on the dissolution of synthetic Fe(III)- and Fe(II)-bearing basaltic glasses; Elsevier Science; Chemical Geology; 523; 30-9-2019; 9-18  
dc.identifier.issn
0009-2541  
dc.identifier.uri
http://hdl.handle.net/11336/122729  
dc.description.abstract
This study investigates the direct and indirect bacterial contributions that influence the dissolution of basaltic glass. In this regard, three different types of glasses – with or without Fe, in the reduced Fe(II) or oxidized Fe(III) states – were prepared on the basis of a simplified basaltic glass composition. In order to prevent the direct contact between the glasses and the model siderophore-producing strain Pseudomonas aeruginosa, the glass samples were isolated in dialysis bags and immersed at 25 °C and pH 6.5 in bacterial cultures. Throughout the dissolution experiments, the following parameters were monitored: determination of bacterial growth, quantification of siderophore (i.e. pyoverdine) production, microscopic observation of the glass surface and determination of dissolution kinetics. Isolating the glass from the bacterial suspension only triggered the biosynthesis of siderophores in the Fe(III)-bearing glass dissolution experiments. Siderophores were produced in the presence of Fe(II)-bearing and Fe-free glass, independently on the experimental setup. The siderophore production appeared to be either continuous in the absence of Fe (glass-free control, Fe-free glass dissolution experiments) or stopped as soon as the bacteria entered their stationary phase when an Fe source was present (Fe(II) and Fe(III)-bearing glass dissolution experiments). The increase in the dissolution rates of each glass was correlated to the complex stability constants of the siderophore with the metallic cations in presence (KFe2+ < KAl3+ ≪ KFe3+). Among the three glasses, only the Fe(III)-bearing one seemed to be significantly impacted by the dialysis process: its dissolution rate was doubled by isolating the glass grains from the cells. These results particularly allow to separate the impact of such bacterial exudates from physical contact effects: they showed the efficiency of pyoverdine in increasing the dissolution of an Fe(III)-bearing glass and evidenced that a direct bacterial cell attachment to the surface of such a glass results in a more moderate enhancement of its dissolution process. This work is a new contribution regarding the high affinity of microorganisms for basaltic glasses as an Fe-source. It highlights the role of Fe(III) accessibility upon the bacterial cells as a key parameter regulating their activity and their efficiency in accelerating the dissolution.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BASALTIC GLASS  
dc.subject
BIOALTERATION  
dc.subject
DISSOLUTION KINETICS  
dc.subject
PSEUDOMONAS AERUGINOSA  
dc.subject
SIDEROPHORE  
dc.subject.classification
Mineralogía  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Direct and indirect impact of the bacterial strain Pseudomonas aeruginosa on the dissolution of synthetic Fe(III)- and Fe(II)-bearing basaltic glasses  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-25T17:58:41Z  
dc.journal.volume
523  
dc.journal.pagination
9-18  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pérez, Anne. Université Paris Est; Francia  
dc.description.fil
Fil: Rossano, Stéphanie. Université Paris Est; Francia  
dc.description.fil
Fil: Trcera, Nicolas. Synchrotron Soleil; Francia  
dc.description.fil
Fil: Verney Carron, Aurélie. Centre National de la Recherche Scientifique; Francia. Laboratoire Interuniversitaire des Systèmes Atmosphériques; Francia  
dc.description.fil
Fil: Rommevaux, Céline. Université́ de Toulon; Francia  
dc.description.fil
Fil: Fourdrin, Chloé. Université Paris Est; Francia  
dc.description.fil
Fil: Agnello, Ana Carolina. Université Paris Est; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina  
dc.description.fil
Fil: Huguenot, David. Université Paris Est; Francia  
dc.description.fil
Fil: Guyot, François. Sorbonne University; Francia  
dc.journal.title
Chemical Geology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemgeo.2019.05.033  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0009254119302657