Artículo
Deepest Minimum Criterion for Biased Affine Estimation
Fecha de publicación:
05/2014
Editorial:
Institute Of Electrical And Electronics Engineers
Revista:
Ieee Transactions On Signal Processing
ISSN:
1053-587X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A new strategy called the Deepest Minimum Criterion (DMC) is presented for optimally obtaining an affine transformation of a given unbiased estimator, when a-priori information on the parameters is known. Here, it is considered that the samples are drawn from a distribution parametrized by an unknown deterministic vector parameter. The a-priori information on the true parameter vector is available in the form of a known subset of the parameter space to which the true parameter vector belongs. A closed form exact solution is given for the non-linear DMC problem in which it is known that the true parameter vector belongs to an ellipsoidal ball and the covariance matrix of the unbiased estimator does not depend on the parameters. A closed form exact solution is also given for the Min-Max strategy for this same case.
Palabras clave:
Llenar Palabras Clave
,
Cargar Articulo
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Cernuschi Frias, Bruno; Gama, Fernando; Casaglia, Daniel; Deepest Minimum Criterion for Biased Affine Estimation; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Signal Processing; 62; 9; 5-2014; 2437-2449
Compartir
Altmétricas