Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Chiumiento, Eduardo Hernan  
dc.contributor.author
Di Iorio y Lucero, María Eugenia  
dc.date.available
2017-01-30T19:37:48Z  
dc.date.issued
2014-02  
dc.identifier.citation
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; The compatible Grassmannian; Elsevier Science; Differential Geometry And Its Applications; 32; 2-2014; 1-27  
dc.identifier.issn
0926-2245  
dc.identifier.uri
http://hdl.handle.net/11336/12165  
dc.description.abstract
Let A be a positive injective operator in a Hilbert space View the MathML source, and denote by View the MathML source the inner product defined by A : [f,g]=〈Af,g〉. A closed subspace S⊂H is called A -compatible if there exists a closed complement for S, which is orthogonal to S with respect to the inner product View the MathML source. Equivalently, if there exists a necessarily unique bounded idempotent operator QS such that R(QS)=S, which is symmetric for this inner product. The compatible Grassmannian GrA is the set of all A -compatible subspaces of H. By parametrizing it via the one to one correspondence S↔QS, this set is shown to be a differentiable submanifold of the Banach space of all bounded operators in H which are symmetric with respect to the form View the MathML source. A Banach–Lie group acts naturally on the compatible Grassmannian, the group of all invertible operators in H which preserve the form View the MathML source. Each connected component in GrA of a compatible subspace S of finite dimension, turns out to be a symplectic leaf in a Banach Lie–Poisson space. For 1⩽p⩽∞, in the presence of a fixed View the MathML source-orthogonal (direct sum) decomposition of H, H=S0+N0, we study the restricted compatible Grassmannian (an analogue of the restricted, or Sato Grassmannian). This restricted compatible Grassmannian is shown to be a submanifold of the Banach space of p -Schatten operators which are symmetric for the form View the MathML source. It carries the locally transitive action of the Banach–Lie group of invertible operators which preserve View the MathML source, and are of the form G=1+K, with K in the p-Schatten class. The connected components of this restricted Grassmannian are characterized by means of the Fredholm index of pairs of projections. Finsler metrics which are isometric for the group actions are introduced for both compatible Grassmannians, and minimality results for curves are proved.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Projection  
dc.subject
Positive Operator  
dc.subject
Compatible Subspace  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The compatible Grassmannian  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-21T18:29:52Z  
dc.journal.volume
32  
dc.journal.pagination
1-27  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina  
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina  
dc.description.fil
Fil: Di Iorio y Lucero, María Eugenia. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina  
dc.journal.title
Differential Geometry And Its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2013.11.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224513001101  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1208.6571