Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Chiumiento, Eduardo Hernan
dc.contributor.author
Di Iorio y Lucero, María Eugenia
dc.date.available
2017-01-30T19:37:48Z
dc.date.issued
2014-02
dc.identifier.citation
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; The compatible Grassmannian; Elsevier Science; Differential Geometry And Its Applications; 32; 2-2014; 1-27
dc.identifier.issn
0926-2245
dc.identifier.uri
http://hdl.handle.net/11336/12165
dc.description.abstract
Let A be a positive injective operator in a Hilbert space View the MathML source, and denote by View the MathML source the inner product defined by A : [f,g]=〈Af,g〉. A closed subspace S⊂H is called A -compatible if there exists a closed complement for S, which is orthogonal to S with respect to the inner product View the MathML source. Equivalently, if there exists a necessarily unique bounded idempotent operator QS such that R(QS)=S, which is symmetric for this inner product. The compatible Grassmannian GrA is the set of all A -compatible subspaces of H. By parametrizing it via the one to one correspondence S↔QS, this set is shown to be a differentiable submanifold of the Banach space of all bounded operators in H which are symmetric with respect to the form View the MathML source. A Banach–Lie group acts naturally on the compatible Grassmannian, the group of all invertible operators in H which preserve the form View the MathML source. Each connected component in GrA of a compatible subspace S of finite dimension, turns out to be a symplectic leaf in a Banach Lie–Poisson space. For 1⩽p⩽∞, in the presence of a fixed View the MathML source-orthogonal (direct sum) decomposition of H, H=S0+N0, we study the restricted compatible Grassmannian (an analogue of the restricted, or Sato Grassmannian). This restricted compatible Grassmannian is shown to be a submanifold of the Banach space of p -Schatten operators which are symmetric for the form View the MathML source. It carries the locally transitive action of the Banach–Lie group of invertible operators which preserve View the MathML source, and are of the form G=1+K, with K in the p-Schatten class. The connected components of this restricted Grassmannian are characterized by means of the Fredholm index of pairs of projections. Finsler metrics which are isometric for the group actions are introduced for both compatible Grassmannians, and minimality results for curves are proved.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Projection
dc.subject
Positive Operator
dc.subject
Compatible Subspace
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The compatible Grassmannian
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-21T18:29:52Z
dc.journal.volume
32
dc.journal.pagination
1-27
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
dc.description.fil
Fil: Di Iorio y Lucero, María Eugenia. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
dc.journal.title
Differential Geometry And Its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2013.11.004
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224513001101
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1208.6571
Archivos asociados