Mostrar el registro sencillo del ítem

dc.contributor.author
Hernández Lahme, Damián Gabriel  
dc.contributor.author
Samengo, Ines  
dc.date.available
2021-01-05T13:22:37Z  
dc.date.issued
2019-06  
dc.identifier.citation
Hernández Lahme, Damián Gabriel; Samengo, Ines; Estimating the mutual information between two discrete, asymmetric variables with limited samples; Molecular Diversity Preservation International; Entropy; 21; 6; 6-2019; 1-20  
dc.identifier.uri
http://hdl.handle.net/11336/121475  
dc.description.abstract
Determining the strength of nonlinear, statistical dependencies between two variables is a crucial matter in many research fields. The established measure for quantifying such relations is the mutual information. However, estimating mutual information from limited samples is a challenging task. Since the mutual information is the difference of two entropies, the existing Bayesian estimators of entropy may be used to estimate information. This procedure, however, is still biased in the severely under-sampled regime. Here, we propose an alternative estimator that is applicable to those cases in which the marginal distribution of one of the two variables?the one with minimal entropy?is well sampled. The other variable, as well as the joint and conditional distributions, can be severely undersampled. We obtain a consistent estimator that presents very low bias, outperforming previous methods even when the sampled data contain few coincidences. As with other Bayesian estimators, our proposal focuses on the strength of the interaction between the two variables, without seeking to model the specific way in which they are related. A distinctive property of our method is that the main data statistics determining the amount of mutual information is the inhomogeneity of the conditional distribution of the low-entropy variable in those states in which the large-entropy variable registers coincidences.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BAYESIAN ESTIMATION  
dc.subject
MUTUAL INFORMATION  
dc.subject
BIAS  
dc.subject
SAMPLING  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Estimating the mutual information between two discrete, asymmetric variables with limited samples  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-16T18:22:19Z  
dc.identifier.eissn
1099-4300  
dc.journal.volume
21  
dc.journal.number
6  
dc.journal.pagination
1-20  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Hernández Lahme, Damián Gabriel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Samengo, Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina  
dc.journal.title
Entropy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/21/6/623  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/e21060623