Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications

Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre Balacca, Guillermo RubenIcon ; González Andujar, José L.; Leon, Ramon G.; Neve, Paul; Poggio, Santiago LuisIcon ; Schutte, Brian J.; Somerville, Gayle J.; Werle, Rodrigo; Acker, Rene Van
Fecha de publicación: 10/2020
Editorial: MDPI AG
Revista: Agronomy
ISSN: 2073-4395
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura; Otras Ciencias Agrícolas

Resumen

In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.
Palabras clave: CROP-WEED COMPETITION , DECISION-SUPPORT TOOLS , GENE FLOW , HERBICIDE RESISTANCE , PREDICTIVE MODELS , WEED POPULATION DYNAMICS , WEED SEEDLING EMERGENCE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.142Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/121468
URL: https://www.mdpi.com/2073-4395/10/10/1611
DOI: http://dx.doi.org/10.3390/agronomy10101611
Colecciones
Articulos(CERZOS)
Articulos de CENTRO REC.NAT.RENOVABLES DE ZONA SEMIARIDA(I)
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre Balacca, Guillermo Ruben; González Andujar, José L.; Leon, Ramon G.; et al.; Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications; MDPI AG; Agronomy; 10; 10; 10-2020; 1-24;1611
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES