Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Microwave tomography with phaseless data on the calcaneus by means of artificial neural networks

Fajardo Freites, Jesús ErnestoIcon ; Lotto, Federico PabloIcon ; Vericat, FernandoIcon ; Carlevaro, Carlos ManuelIcon ; Irastorza, Ramiro MiguelIcon
Fecha de publicación: 02/2019
Editorial: Springer
Revista: Medical and Biological Engineering and Computing
ISSN: 1741-0444
e-ISSN: 2331-8422
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The aim of this study is to use a multilayer perceptron (MLP) artificial neural network (ANN) for phaseless imaging the human heel (modeled as a bilayer dielectric media: bone and surrounding tissue) and the calcaneus cross-section size and location using a two-dimensional (2D) microwave tomographic array. Computer simulations were performed over 2D dielectric maps inspired by computed tomography (CT) images of human heels for training and testing the MLP. A morphometric analysis was performed to account for the scatterer shape influence on the results. A robustness analysis was also conducted in order to study the MLP performance in noisy conditions. The standard deviations of the relative percentage errors on estimating the dielectric properties of the calcaneus bone were relatively high. Regarding the calcaneus surrounding tissue, the dielectric parameters estimations are better, with relative percentage error standard deviations up to ≈ 15%. The location and size of the calcaneus are always properly estimated with absolute error standard deviations up to ≈ 3 mm.
Palabras clave: Cancellous bone MicrowaveTomography , Dielectric properties , Deep learning , Artificial Neural Networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.743Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/121467
URL: https://arxiv.org/pdf/1902.07777.pdf
DOI: https://doi.org/10.1007/s11517-019-02090-y
URL: https://link.springer.com/article/10.1007/s11517-019-02090-y
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Fajardo Freites, Jesús Ernesto; Lotto, Federico Pablo; Vericat, Fernando; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel; Microwave tomography with phaseless data on the calcaneus by means of artificial neural networks; Springer; Medical and Biological Engineering and Computing; 58; 2; 2-2019; 433-442
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES