Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites

Capiel, GuillerminaIcon ; Arrosio, FlorenciaIcon ; Alvarez, Vera AlejandraIcon ; Montemartini, Pablo EzequielIcon ; Morán, Juan
Fecha de publicación: 07/2019
Editorial: Scientific Research Publishing Inc.
Revista: Journal of Materials Science and Chemical Engineering
ISSN: 2327-6053
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Compuestos

Resumen

Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system?s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time.
Palabras clave: Artificial Neural Networks , Epoxy-Anhydride , Clay Nanocomposites , Water Absorption
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.694Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/121284
URL: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/msce.2019.78010
DOI: http://dx.doi.org/10.4236/msce.2019.78010
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Capiel, Guillermina; Arrosio, Florencia; Alvarez, Vera Alejandra; Montemartini, Pablo Ezequiel; Morán, Juan; An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites; Scientific Research Publishing Inc.; Journal of Materials Science and Chemical Engineering; 07; 8; 7-2019; 87-97
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES