Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez Corazza, Mariano
dc.contributor.author
Turovets, Sergei
dc.contributor.author
Muravchik, Carlos Horacio
dc.date.available
2020-12-28T16:52:17Z
dc.date.issued
2019-12
dc.identifier.citation
Fernandez Corazza, Mariano; Turovets, Sergei; Muravchik, Carlos Horacio; Unification of optimal targeting methods in transcranial electrical stimulation; Academic Press Inc.; Journal Neuroimag; 209; 116403; 12-2019; 1-66
dc.identifier.issn
1053-8119
dc.identifier.uri
http://hdl.handle.net/11336/121235
dc.description.abstract
One of the major questions in high-density transcranial electrical stimulation (TES) is: given a region of interest (ROI) and electric current limits for safety, how much current should be delivered by each electrode for optimal targeting of the ROI? Several solutions, apparently unrelated, have been independently proposed depending on how ?optimality? is defined and on how this optimization problem is stated mathematically. The least squares (LS), weighted LS (WLS), or reciprocity-based approaches are the simplest ones and have closed-form solutions. An extended optimization problem can be stated as follows: maximize the directional intensity at the ROI, limit the electric fields at the non-ROI, and constrain total injected current and current per electrode for safety. This problem requires iterative convex or linear optimization solvers. We theoretically prove in this work that the LS, WLS and reciprocity-based closed-form solutions are specific solutions to the extended directional maximization optimization problem. Moreover, the LS/WLS and reciprocity-based solutions are the two extreme cases of the intensity-focality trade-off, emerging under variation of a unique parameter of the extended directional maximization problem, the imposed constraint to the electric fields at the non-ROI. We validate and illustrate these findings with simulations on an atlas head model. The unified approach we present here allows a better understanding of the nature of the TES optimization problem and helps in the development of advanced and more effective targeting strategies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
LEAST SQUARES
dc.subject
OPTIMAL ELECTRICAL STIMULATION
dc.subject
RECIPROCITY THEOREM
dc.subject
TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS)
dc.subject
TRANSCRANIAL ELECTRICAL STIMULATION (TES)
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Unification of optimal targeting methods in transcranial electrical stimulation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-13T20:42:06Z
dc.journal.volume
209
dc.journal.number
116403
dc.journal.pagination
1-66
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
dc.description.fil
Fil: Turovets, Sergei. University of Oregon; Estados Unidos
dc.description.fil
Fil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
dc.journal.title
Journal Neuroimag
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neuroimage.2019.116403
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811919309942
Archivos asociados