Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez Corazza, Mariano  
dc.contributor.author
Turovets, Sergei  
dc.contributor.author
Muravchik, Carlos Horacio  
dc.date.available
2020-12-28T16:52:17Z  
dc.date.issued
2019-12  
dc.identifier.citation
Fernandez Corazza, Mariano; Turovets, Sergei; Muravchik, Carlos Horacio; Unification of optimal targeting methods in transcranial electrical stimulation; Academic Press Inc.; Journal Neuroimag; 209; 116403; 12-2019; 1-66  
dc.identifier.issn
1053-8119  
dc.identifier.uri
http://hdl.handle.net/11336/121235  
dc.description.abstract
One of the major questions in high-density transcranial electrical stimulation (TES) is: given a region of interest (ROI) and electric current limits for safety, how much current should be delivered by each electrode for optimal targeting of the ROI? Several solutions, apparently unrelated, have been independently proposed depending on how ?optimality? is defined and on how this optimization problem is stated mathematically. The least squares (LS), weighted LS (WLS), or reciprocity-based approaches are the simplest ones and have closed-form solutions. An extended optimization problem can be stated as follows: maximize the directional intensity at the ROI, limit the electric fields at the non-ROI, and constrain total injected current and current per electrode for safety. This problem requires iterative convex or linear optimization solvers. We theoretically prove in this work that the LS, WLS and reciprocity-based closed-form solutions are specific solutions to the extended directional maximization optimization problem. Moreover, the LS/WLS and reciprocity-based solutions are the two extreme cases of the intensity-focality trade-off, emerging under variation of a unique parameter of the extended directional maximization problem, the imposed constraint to the electric fields at the non-ROI. We validate and illustrate these findings with simulations on an atlas head model. The unified approach we present here allows a better understanding of the nature of the TES optimization problem and helps in the development of advanced and more effective targeting strategies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
LEAST SQUARES  
dc.subject
OPTIMAL ELECTRICAL STIMULATION  
dc.subject
RECIPROCITY THEOREM  
dc.subject
TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS)  
dc.subject
TRANSCRANIAL ELECTRICAL STIMULATION (TES)  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Unification of optimal targeting methods in transcranial electrical stimulation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-13T20:42:06Z  
dc.journal.volume
209  
dc.journal.number
116403  
dc.journal.pagination
1-66  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Turovets, Sergei. University of Oregon; Estados Unidos  
dc.description.fil
Fil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina  
dc.journal.title
Journal Neuroimag  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neuroimage.2019.116403  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811919309942