Mostrar el registro sencillo del ítem

dc.contributor.author
Bonomo, Flavia  
dc.contributor.author
de Estrada, Diego  
dc.date.available
2020-12-28T15:24:05Z  
dc.date.issued
2019-05  
dc.identifier.citation
Bonomo, Flavia; de Estrada, Diego; On the thinness and proper thinness of a graph; Elsevier Science; Discrete Applied Mathematics; 261; 5-2019; 78-92  
dc.identifier.issn
0166-218X  
dc.identifier.uri
http://hdl.handle.net/11336/121210  
dc.description.abstract
Graphs with bounded thinness were defined in 2007 as a generalization of interval graphs. In this paper we introduce the concept of proper thinness, such that graphs with bounded proper thinness generalize proper interval graphs. We study the complexity of problems related to the computation of these parameters, describe the behavior of the thinness and proper thinness under three graph operations, and relate thinness and proper thinness to other graph invariants in the literature. Finally, we describe a wide family of problems that can be solved in polynomial time for graphs with bounded thinness, generalizing for example list matrix partition problems with bounded size matrix, and enlarge this family of problems for graphs with bounded proper thinness, including domination problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INTERVAL GRAPHS  
dc.subject
PROPER INTERVAL GRAPHS  
dc.subject
PROPER THINNESS  
dc.subject
THINNESS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the thinness and proper thinness of a graph  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-30T14:18:11Z  
dc.journal.volume
261  
dc.journal.pagination
78-92  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: de Estrada, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.journal.title
Discrete Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2018.03.072  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0166218X1830180X