Mostrar el registro sencillo del ítem

dc.contributor.author
Zhou, Jian*  
dc.contributor.author
Schor, Ignacio Esteban  
dc.contributor.author
Yao, Victoria  
dc.contributor.author
Theesfeld, Chandra L.  
dc.contributor.author
Marco-Ferreres, Raquel  
dc.contributor.author
Tadych, Alicja  
dc.contributor.author
Furlong, Eileen E. M.  
dc.contributor.author
Troyanskaya, Olga G.  
dc.date.available
2020-12-28T15:13:52Z  
dc.date.issued
2019-09  
dc.identifier.citation
Zhou, Jian*; Schor, Ignacio Esteban; Yao, Victoria; Theesfeld, Chandra L.; Marco-Ferreres, Raquel; et al.; Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development; Public Library of Science; Plos Genetics; 15; 9; 9-2019; 1-20  
dc.identifier.issn
1553-7390  
dc.identifier.uri
http://hdl.handle.net/11336/121206  
dc.description.abstract
Comprehensive information on the timing and location of gene expression is fundamental to our understanding of embryonic development and tissue formation. While high-throughput in situ hybridization projects provide invaluable information about developmental gene expression patterns for model organisms like Drosophila, the output of these experiments is primarily qualitative, and a high proportion of protein coding genes and most non-coding genes lack any annotation. Accurate data-centric predictions of spatio-temporal gene expression will therefore complement current in situ hybridization efforts. Here, we applied a machine learning approach by training models on all public gene expression and chromatin data, even from whole-organism experiments, to provide genome-wide, quantitative spatiotemporal predictions for all genes. We developed structured in silico nano-dissection, a computational approach that predicts gene expression in >200 tissue-developmental stages. The algorithm integrates expression signals from a compendium of 6,378 genome-wide expression and chromatin profiling experiments in a cell lineage-aware fashion. We systematically evaluated our performance via cross-validation and experimentally confirmed 22 new predictions for four different embryonic tissues. The model also predicts complex, multi-tissue expression and developmental regulation with high accuracy. We further show the potential of applying these genome-wide predictions to extract tissue specificity signals from non-tissue-dissected experiments, and to prioritize tissues and stages for disease modeling. This resource, together with the exploratory tools are freely available at our webserver http://find.princeton.edu, which provides a valuable tool for a range of applications, from predicting spatio-temporal expression patterns to recognizing tissue signatures from differential gene expression profiles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Gene expression  
dc.subject
Gene prediction  
dc.subject
Drosophila melanogaster  
dc.subject
Embryo  
dc.subject
Muscle tissue  
dc.subject
Transcriptome analysis  
dc.subject
Machine learning algorithms  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-13T20:42:38Z  
dc.journal.volume
15  
dc.journal.number
9  
dc.journal.pagination
1-20  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Zhou, Jian*. University of Princeton; Estados Unidos  
dc.description.fil
Fil: Schor, Ignacio Esteban. European Molecular Biology Laboratory; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.description.fil
Fil: Yao, Victoria. University of Princeton; Estados Unidos  
dc.description.fil
Fil: Theesfeld, Chandra L.. University of Princeton; Estados Unidos  
dc.description.fil
Fil: Marco-Ferreres, Raquel. European Molecular Biology Laboratory; Alemania  
dc.description.fil
Fil: Tadych, Alicja. University of Princeton; Estados Unidos  
dc.description.fil
Fil: Furlong, Eileen E. M.. European Molecular Biology Laboratory; Alemania  
dc.description.fil
Fil: Troyanskaya, Olga G.. University of Princeton; Estados Unidos  
dc.journal.title
Plos Genetics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dx.plos.org/10.1371/journal.pgen.1008382  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pgen.1008382