Artículo
Low discrepancy sequences failing Poissonian pair correlations
Fecha de publicación:
08/2019
Editorial:
Birkhauser Verlag Ag
Revista:
Archiv Der Mathematik
ISSN:
0003-889X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
M. Levin defined a real number x that satisfies that the sequence of the fractional parts of (2nx)n≥1 are such that the first N terms have discrepancy O((log N) 2/ N) , which is the smallest discrepancy known for this kind of parametric sequences. In this work we show that the fractional parts of the sequence (2nx)n≥1 fail to have Poissonian pair correlations. Moreover, we show that all the real numbers x that are variants of Levin’s number using Pascal triangle matrices are such that the fractional parts of the sequence (2nx)n≥1 fail to have Poissonian pair correlations.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Becher, Veronica Andrea; Carton, Olivier; Mollo Cunningham, Ignacio Agustín; Low discrepancy sequences failing Poissonian pair correlations; Birkhauser Verlag Ag; Archiv Der Mathematik; 113; 2; 8-2019; 169-178
Compartir
Altmétricas