Artículo
Localizing epileptogenic regions using high-frequency oscillations and machine learning
Weiss, Shennan A.; Waldman, Zachary; Raimondo, Federico
; Fernandez Slezak, Diego
; Donmez, Mustafa; Worrell, Gregory; Bragin, Anatol; Engel, Jerome; Staba, Richard; Sperling, Michael
Fecha de publicación:
04/2019
Editorial:
Future Medicine
Revista:
Biomarkers In Medicine
ISSN:
1752-0363
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Pathological high frequency oscillations (HFOs) are putative neurophysiological biomarkers of epileptogenic brain tissue. Utilizing HFOs for epilepsy surgery planning offers the promise of improved seizure outcomes for patients with medically refractory epilepsy. This review discusses possible machine learning strategies that can be applied to HFO biomarkers to better identify epileptogenic regions. We discuss the role of HFO rate, and utilizing features such as explicit HFO properties (spectral content, duration, and power) and phase-amplitude coupling for distinguishing pathological HFO (pHFO) events from physiological HFO events. In addition, the review highlights the importance of neuroanatomical localization in machine learning strategies.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Weiss, Shennan A.; Waldman, Zachary; Raimondo, Federico; Fernandez Slezak, Diego; Donmez, Mustafa; et al.; Localizing epileptogenic regions using high-frequency oscillations and machine learning; Future Medicine; Biomarkers In Medicine; 13; 5; 4-2019; 409-418
Compartir
Altmétricas