Mostrar el registro sencillo del ítem
dc.contributor.author
Kalimeri, Kyriaki
dc.contributor.author
Beiro, Mariano Gastón
dc.contributor.author
Delfino, Matteo
dc.contributor.author
Raleigh, Robert
dc.contributor.author
Cattuto, Ciro
dc.date.available
2020-12-23T13:43:04Z
dc.date.issued
2019-03
dc.identifier.citation
Kalimeri, Kyriaki; Beiro, Mariano Gastón; Delfino, Matteo; Raleigh, Robert; Cattuto, Ciro; Predicting demographics, moral foundations, and human values from digital behaviours; Elsevier; Computers in Human Behavior; 92; 3-2019; 428-445
dc.identifier.issn
0747-5632
dc.identifier.uri
http://hdl.handle.net/11336/121092
dc.description.abstract
Personal electronic devices including smartphones give access to behavioural signals that can be used to learn about the characteristics and preferences of individuals. In this study, we explore the connection between demographic and psychological attributes and the digital behavioural records, for a cohort of 7633 people, closely representative of the US population with respect to gender, age, geographical distribution, education, and income. Along with the demographic data, we collected self-reported assessments on validated psychometric questionnaires for moral traits and basic human values, and combined this information with passively collected multi-modal digital data from web browsing behaviour and smartphone usage. A machine learning framework was then designed to infer both the demographic and psychological attributes from the behavioural data. In a cross-validated setting, our models predicted demographic attributes with good accuracy as measured by the weighted AUROC score (Area Under the Receiver Operating Characteristic), but were less performant for the moral traits and human values. These results call for further investigation, since they are still far from unveiling individuals’ psychological fabric. This connection, along with the most predictive features that we provide for each attribute, might prove useful for designing personalised services, communication strategies, and interventions, and can be used to sketch a portrait of people with similar worldview.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COMPUTATIONAL SOCIAL SCIENCE
dc.subject
DEMOGRAPHICS
dc.subject
MACHINE LEARNING
dc.subject
MORAL FOUNDATIONS
dc.subject
PSYCHOLOGICAL PROFILES
dc.subject
SMARTPHONE DATA
dc.subject.classification
Ciencias Sociales Interdisciplinarias
dc.subject.classification
Otras Ciencias Sociales
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Predicting demographics, moral foundations, and human values from digital behaviours
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-09T15:27:03Z
dc.journal.volume
92
dc.journal.pagination
428-445
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Kalimeri, Kyriaki. No especifíca;
dc.description.fil
Fil: Beiro, Mariano Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
dc.description.fil
Fil: Delfino, Matteo. No especifíca;
dc.description.fil
Fil: Raleigh, Robert. No especifíca;
dc.description.fil
Fil: Cattuto, Ciro. No especifíca;
dc.journal.title
Computers in Human Behavior
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0747563218305594
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chb.2018.11.024
Archivos asociados