Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Inference of stochastic parametrizations for model error treatment using nested ensemble Kalman filters

Scheffler, Guillermo FedericoIcon ; Ruiz Holgado, Juan DanielIcon ; Pulido, Manuel ArturoIcon
Fecha de publicación: 04/2019
Editorial: John Wiley & Sons Ltd
Revista: Quarterly Journal of the Royal Meteorological Society
ISSN: 0035-9009
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas; Geociencias multidisciplinaria

Resumen

Stochastic parametrizations are increasingly used to represent the uncertainty associated with model errors in ensemble forecasting and data assimilation. One of the challenges associated with the use of these parametrizations is the characterization of the statistical properties of the stochastic processes within their formulation. In this work, a hierarchical Bayesian approach based on two nested ensemble Kalman filters is proposed for inferring parameters associated with stochastic parametrizations. The proposed technique is based on the Rao-Blackwellization of the parameter estimation problem. It consists of an ensemble of ensemble Kalman filters, each of them using a different set of stochastic parameter values. We show the ability of the technique to infer parameters related to the covariance of stochastic representations of model error in the Lorenz-96 dynamical system. The evaluation is conducted with stochastic twin experiments and with imperfect model experiments with unresolved physics in the forecast model. The technique performs successfully under different model error covariance structures. The technique is conceived to be applied offline as part of an apriori optimization of the data assimilation system and could, in principle, be extended to the estimation of other hyperparameters of the data assimilation system.
Palabras clave: HIERARCHICAL KALMAN FILTERS , MODEL ERROR , PARAMETER ESTIMATION , STOCHASTIC PARAMETRIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.102Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/121017
DOI: https://doi.org/10.1002/qj.3542
URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3542
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Scheffler, Guillermo Federico; Ruiz Holgado, Juan Daniel; Pulido, Manuel Arturo; Inference of stochastic parametrizations for model error treatment using nested ensemble Kalman filters; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 145; 722; 4-2019; 2028-2045
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES