Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A deep learning approach to automatic road surface monitoring and pothole detection

Varona, Braian RaúlIcon ; Monteserin, Ariel JoséIcon ; Teyseyre, Alfredo RaulIcon
Fecha de publicación: 05/2019
Editorial: Springer London Ltd
Revista: Personal And Ubiquitous Computing
ISSN: 1617-4909
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Anomalies in road surface not only impact road quality but also affect driver safety, mechanic structure of the vehicles, and fuel consumption. Several approaches have been proposed to automatic monitoring of the road surface condition in order to assess road roughness and to detect potholes. Some of these approaches adopt a crowdsensing perspective by using a built-in smartphone accelerometer to sense the road surface. Although the crowdsensing perspective has several advantages as ubiquitousness and low cost, it has certain sensibility to the false positives produced by man-made structures, driver actions, and road surface characteristics that cannot be considered as road anomalies. For this reason, we propose a deep learning approach that allows us (a) to automatically identify the different kinds of road surface, and (b) to automatically distinguish potholes from destabilizations produced by speed bumps or driver actions in the crowdsensing-based application context. In particular, we analyze and apply different deep learning models: convolutional neural networks, LSTM networks, and reservoir computing models. The experiments were carried out with real-world information, and the results showed a promising accuracy in solving both problems.
Palabras clave: CROWDSENSING , DEEP LEARNING , POTHOLE DETECTION , ROAD SURFACE MONITORING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.039Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/120932
URL: http://link.springer.com/10.1007/s00779-019-01234-z
DOI: http://dx.doi.org/10.1007/s00779-019-01234-z
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Varona, Braian Raúl; Monteserin, Ariel José; Teyseyre, Alfredo Raul; A deep learning approach to automatic road surface monitoring and pothole detection; Springer London Ltd; Personal And Ubiquitous Computing; 24; 4; 5-2019; 519-534
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES