Artículo
Unsupervised classification for landslide detection from airborne laser scanning
Fecha de publicación:
05/2019
Editorial:
MDPI
Revista:
Geosciences
e-ISSN:
2076-3263
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IANIGLA)
Articulos de INST. ARG. DE NIVOLOGIA, GLACIOLOGIA Y CS. AMBIENT
Articulos de INST. ARG. DE NIVOLOGIA, GLACIOLOGIA Y CS. AMBIENT
Citación
Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela; Unsupervised classification for landslide detection from airborne laser scanning; MDPI; Geosciences; 9; 5; 5-2019; 1-14
Compartir
Altmétricas