Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A modelling study highlights the power of detecting and isolating asymptomatic or very mildly affected individuals for COVID-19 epidemic management

Mayorga, LíaIcon ; García Samartino, Clara; Flores, Gabriel; Masuelli, SofíaIcon ; Sanchez Sanchez, Maria VictoriaIcon ; Mayorga, Luis SegundoIcon ; Sánchez, Cristián G.
Fecha de publicación: 12/2020
Editorial: BioMed Central
Revista: BMC Public Health
ISSN: 1471-2458
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Epidemiología

Resumen

Background: Mathematical modelling of infectious diseases is a powerful tool for the design of management policies and a fundamental part of the arsenal currently deployed to deal with the COVID-19 pandemic. Methods: We present a compartmental model for the disease where symptomatic and asymptomatic individuals move separately. We introduced healthcare burden parameters allowing to infer possible containment and suppression strategies. In addition, the model was scaled up to describe different interconnected areas, giving the possibility to trigger regionalized measures. It was specially adjusted to Mendoza-Argentina’s parameters, but is easily adaptable for elsewhere. Results: Overall, the simulations we carried out were notably more effective when mitigation measures were not relaxed in between the suppressive actions. Since asymptomatics or very mildly affected patients are the vast majority, we studied the impact of detecting and isolating them. The removal of asymptomatics from the infectious pool remarkably lowered the effective reproduction number, healthcare burden and overall fatality. Furthermore, different suppression triggers regarding ICU occupancy were attempted. The best scenario was found to be the combination of ICU occupancy triggers (on: 50%, off: 30%) with the detection and isolation of asymptomatic individuals. In the ideal assumption that 45% of the asymptomatics could be detected and isolated, there would be no need for complete lockdown, and Mendoza’s healthcare system would not collapse. Conclusions: Our model and its analysis inform that the detection and isolation of all infected individuals, without leaving aside the asymptomatic group is the key to surpass this pandemic.
Palabras clave: ASYMPTOMATIC , COVID-19 , HEALTHCARE BURDEN , SARS-COV-2 , SEIR MATHEMATICAL MODELLING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.701Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/120477
URL: https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-020-09843-7
DOI: http://dx.doi.org/10.1186/s12889-020-09843-7
Colecciones
Articulos(IHEM)
Articulos de INST. HISTOLOGIA Y EMBRIOLOGIA DE MEND DR.M.BURGOS
Articulos(IMBECU)
Articulos de INST. DE MEDICINA Y BIO. EXP. DE CUYO
Articulos(IQUIBICEN)
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Citación
Mayorga, Lía; García Samartino, Clara; Flores, Gabriel; Masuelli, Sofía; Sanchez Sanchez, Maria Victoria; et al.; A modelling study highlights the power of detecting and isolating asymptomatic or very mildly affected individuals for COVID-19 epidemic management; BioMed Central; BMC Public Health; 20; 1; 12-2020; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES