Mostrar el registro sencillo del ítem

dc.contributor.author
Poma, Hugo Ramiro  
dc.contributor.author
Kundu, Arti  
dc.contributor.author
Wuertz, Stefan  
dc.contributor.author
Rajal, Verónica Beatriz  
dc.date.available
2020-12-14T23:57:45Z  
dc.date.issued
2019-05  
dc.identifier.citation
Poma, Hugo Ramiro; Kundu, Arti; Wuertz, Stefan; Rajal, Verónica Beatriz; Data fitting approach more critical than exposure scenarios and treatment of censored data for quantitative microbial risk assessment; Pergamon-Elsevier Science Ltd; Water Research; 154; 5-2019; 45-53  
dc.identifier.issn
0043-1354  
dc.identifier.uri
http://hdl.handle.net/11336/120403  
dc.description.abstract
Recreational waters are a source of many diseases caused by human viral pathogens, including norovirus genogroup II (NoV GII) and enterovirus (EV). Water samples from the Arenales river in Salta, Argentina, were concentrated by ultrafiltration and analyzed for the concentrations of NoV GII and EV by quantitative PCR. Out of 65 samples, 61 and 59 were non-detects (below the Sample Limit of Detection limit, SLOD) for EV and NoV GII, respectively. We hypothesized that a finite number of environmental samples would lead to different conclusions regarding human health risks based on how data were treated and fitted to existing distribution functions. A quantitative microbial risk assessment (QMRA) was performed and the risk of infection was calculated using: (a) two methodological approaches to find the distributions that best fit the data sets (methods H and R), (b) four different exposure scenarios (primary contact for children and adults and secondary contact by spray inhalation/ingestion and hand-to-mouth contact), and (c) five alternatives for treating censored data. The risk of infection for NoV GII was much higher (and exceeded in most cases the acceptable value established by the USEPA) than for EV (in almost all the scenarios within the recommended limit), mainly due to the low infectious dose of NoV. The type of methodology used to fit the monitoring data was critical for these datasets with numerous non-detects, leading to very different estimates of risk. Method R resulted in higher projected risks than Method H. Regarding the alternatives for treating censored data, replacing non-detects by a unique value like the average or median SLOD to simplify the calculations led to the loss of information about the particular characteristics of each sample. In addition, the average SLOD was highly impacted by extreme values (due to events such as precipitations or point source contamination). Instead, using the SLOD or half- SLOD captured the uniqueness of each sample since they account for the history of the sample including the concentration procedure and the detection method used. Finally, substitution of non-detects by Zero is not realistic since a negative result would be associated with a SLOD that can change by developing more efficient and sensitive methodology; hence this approach would lead to an underestimation of the health risk. Our findings suggest that in most cases the use of the half-SLOD approach is appropriate for QMRA modeling.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CENSORED DATA  
dc.subject
ENTERIC VIRUS  
dc.subject
QUANTITATIVE MICROBIAL RISK ASSESSMENT  
dc.subject
RECREATIONAL WATER  
dc.subject
WATERBORNE DISEASE  
dc.subject.classification
Otras Ingeniería del Medio Ambiente  
dc.subject.classification
Ingeniería del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Data fitting approach more critical than exposure scenarios and treatment of censored data for quantitative microbial risk assessment  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-25T17:51:50Z  
dc.journal.volume
154  
dc.journal.pagination
45-53  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Poma, Hugo Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina  
dc.description.fil
Fil: Kundu, Arti. University of California; Estados Unidos  
dc.description.fil
Fil: Wuertz, Stefan. University of California; Estados Unidos. Nanyang Technological University.; Singapur  
dc.description.fil
Fil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina. Nanyang Technological University.; Singapur  
dc.journal.title
Water Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.watres.2019.01.041  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0043135419300958