Artículo
Non-paritious Hilbert modular forms
Fecha de publicación:
01/06/2019
Editorial:
Springer
Revista:
Mathematische Zeitschrift
ISSN:
0025-5874
e-ISSN:
1432-1823
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example.
Palabras clave:
GALOIS REPRESENTATIONS
,
HILBERT MODULAR FORMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín; Non-paritious Hilbert modular forms; Springer; Mathematische Zeitschrift; 292; 1-2; 1-6-2019; 361-385
Compartir
Altmétricas