Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.date.available
2020-12-03T13:13:36Z
dc.date.issued
2020-11
dc.identifier.citation
Andruchow, Esteban; A note on geodesics of projections in the Calkin algebra; Birkhauser Verlag Ag; Archiv Der Mathematik; 115; 5; 11-2020; 545-553
dc.identifier.issn
0003-889X
dc.identifier.uri
http://hdl.handle.net/11336/119699
dc.description.abstract
Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CALKIN ALGEBRA
dc.subject
GEODESICS OF PROJECTIONS
dc.subject
PROJECTIONS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A note on geodesics of projections in the Calkin algebra
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-02T20:11:46Z
dc.journal.volume
115
dc.journal.number
5
dc.journal.pagination
545-553
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.journal.title
Archiv Der Mathematik
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00013-020-01509-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00013-020-01509-5
Archivos asociados