Artículo
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
Fecha de publicación:
05/2019
Editorial:
London Mathematical Society
Revista:
Proceedings of the London Mathematical Society
ISSN:
0024-6115
e-ISSN:
1460-244X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q.
Palabras clave:
11G05 (PRIMARY)
,
14H52 (SECONDARY)
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Cremona, John; Pacetti, Ariel Martín; On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1; London Mathematical Society; Proceedings of the London Mathematical Society; 118; 5; 5-2019; 1245-1276
Compartir
Altmétricas