Mostrar el registro sencillo del ítem

dc.contributor.author
Odella, Emmanuel  
dc.contributor.author
Mora, S. Jimena  
dc.contributor.author
Wadsworth, Brian L.  
dc.contributor.author
Goings, Joshua J.  
dc.contributor.author
Gervaldo, Miguel Andres  
dc.contributor.author
Sereno, Leonides Edmundo  
dc.contributor.author
Groy, Thomas L.  
dc.contributor.author
Gust, Devens  
dc.contributor.author
Moore, Thomas A.  
dc.contributor.author
Moore, Gary F.  
dc.contributor.author
Hammes Schiffer, Sharon  
dc.contributor.author
Moore, Ana L.  
dc.date.available
2020-12-02T17:46:06Z  
dc.date.issued
2020-03  
dc.identifier.citation
Odella, Emmanuel; Mora, S. Jimena; Wadsworth, Brian L.; Goings, Joshua J.; Gervaldo, Miguel Andres; et al.; Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires; Royal Society of Chemistry; Chemical Science; 11; 15; 3-2020; 3820-3828  
dc.identifier.issn
2041-6539  
dc.identifier.uri
http://hdl.handle.net/11336/119647  
dc.description.abstract
Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular "dry proton wires" with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
PROTON-COUPLED ELECTRON TRANSFER  
dc.subject
BENZIMIDAZOLE-PHENOL  
dc.subject.classification
Química Orgánica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-04T15:09:18Z  
dc.journal.volume
11  
dc.journal.number
15  
dc.journal.pagination
3820-3828  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Odella, Emmanuel. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Mora, S. Jimena. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Goings, Joshua J.. University of Yale. Yale School of Forestry & Environmental Studies; Estados Unidos  
dc.description.fil
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina  
dc.description.fil
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina  
dc.description.fil
Fil: Groy, Thomas L.. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Gust, Devens. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Moore, Gary F.. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Hammes Schiffer, Sharon. University of Yale. Yale School of Forestry & Environmental Studies; Estados Unidos  
dc.description.fil
Fil: Moore, Ana L.. Arizona State University; Estados Unidos  
dc.journal.title
Chemical Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/C9SC06010C