Mostrar el registro sencillo del ítem
dc.contributor.author
Duoandikoextea, Javier
dc.contributor.author
Martín Reyes, Francisco Javier
dc.contributor.author
Ombrosi, Sheldy Javier
dc.date.available
2017-01-25T19:58:09Z
dc.date.issued
2013-09
dc.identifier.citation
Duoandikoextea, Javier; Martín Reyes, Francisco Javier; Ombrosi, Sheldy Javier; Calderón weights as Muckenhoupt weights; Indiana University; Indiana University Mathematics Journal; 62; 3; 9-2013; 891-910
dc.identifier.issn
0022-2518
dc.identifier.uri
http://hdl.handle.net/11336/11929
dc.description.abstract
The Calderón operator S is the sum of the the Hardy averaging operator and its adjoint. The weights w for which S is bounded on L p(w) are the Calderón weights of the class Cp. We prove a characterization of the weights in Cp by a single condition which allows us to see that Cp is the class of Muckenhoupt weights associated with a maximal operator defined through a basis in (0,∞). The same condition characterizes the weighted weak-type inequalities for 1 < p < ∞, but that the weights for the strong type and the weak type differ for p = 1. We also prove that the weights in Cp do not behave like the usual Ap weights with respect to some properties and, in particular, we answer an open question on extrapolation for Muckenhoupt bases without the openness property.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Indiana University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CALDERÓN OPERATOR
dc.subject
MAXIMAL OPERATOR
dc.subject
MUCKENHOUPT BASES
dc.subject
WEIGHTED INEQUALITIES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Calderón weights as Muckenhoupt weights
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-01-24T18:30:30Z
dc.journal.volume
62
dc.journal.number
3
dc.journal.pagination
891-910
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Bloomington
dc.description.fil
Fil: Duoandikoextea, Javier. Universidad del Pais Vasco; España
dc.description.fil
Fil: Martín Reyes, Francisco Javier. Universidad de Malaga; España
dc.description.fil
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
Indiana University Mathematics Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/oai/2013/62/4971/4971.xml
Archivos asociados