Mostrar el registro sencillo del ítem

dc.contributor.author
Duoandikoextea, Javier  
dc.contributor.author
Martín Reyes, Francisco Javier  
dc.contributor.author
Ombrosi, Sheldy Javier  
dc.date.available
2017-01-25T19:58:09Z  
dc.date.issued
2013-09  
dc.identifier.citation
Duoandikoextea, Javier; Martín Reyes, Francisco Javier; Ombrosi, Sheldy Javier; Calderón weights as Muckenhoupt weights; Indiana University; Indiana University Mathematics Journal; 62; 3; 9-2013; 891-910  
dc.identifier.issn
0022-2518  
dc.identifier.uri
http://hdl.handle.net/11336/11929  
dc.description.abstract
The Calderón operator S is the sum of the the Hardy averaging operator and its adjoint. The weights w for which S is bounded on L p(w) are the Calderón weights of the class Cp. We prove a characterization of the weights in Cp by a single condition which allows us to see that Cp is the class of Muckenhoupt weights associated with a maximal operator defined through a basis in (0,∞). The same condition characterizes the weighted weak-type inequalities for 1 < p < ∞, but that the weights for the strong type and the weak type differ for p = 1. We also prove that the weights in Cp do not behave like the usual Ap weights with respect to some properties and, in particular, we answer an open question on extrapolation for Muckenhoupt bases without the openness property.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Indiana University  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CALDERÓN OPERATOR  
dc.subject
MAXIMAL OPERATOR  
dc.subject
MUCKENHOUPT BASES  
dc.subject
WEIGHTED INEQUALITIES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Calderón weights as Muckenhoupt weights  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-01-24T18:30:30Z  
dc.journal.volume
62  
dc.journal.number
3  
dc.journal.pagination
891-910  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Bloomington  
dc.description.fil
Fil: Duoandikoextea, Javier. Universidad del Pais Vasco; España  
dc.description.fil
Fil: Martín Reyes, Francisco Javier. Universidad de Malaga; España  
dc.description.fil
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Indiana University Mathematics Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/oai/2013/62/4971/4971.xml