Mostrar el registro sencillo del ítem
dc.contributor.author
Moreno, Marta Susana
dc.contributor.author
Andersen, Federico Ezequiel
dc.contributor.author
Diaz, Maria Soledad
dc.date.available
2017-01-25T19:52:50Z
dc.date.issued
2013-03
dc.identifier.citation
Moreno, Marta Susana; Andersen, Federico Ezequiel; Diaz, Maria Soledad; Dynamic Modeling and Parameter Estimation for Unit Operations in Lignocellulosic Bioethanol Production; American Chemical Society; Industrial & Engineering Chemical Research; 52; 11; 3-2013; 4146-4160
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/11924
dc.description.abstract
During the past decades, intensive research has been pursued on the development of kinetic models to predict process behavior in ethanol production from lignocellulose. These models comprise a large number of parameters which have to be tuned with appropriate experimental data. Therefore, the parameter estimation problem plays an essential role. This work addresses the parameter estimation problem in models representing dilute acid hydrolysis, detoxification, and cofermentation operations in the biochemical production of ethanol from lignocellulosic biomass. The models are represented by sets of differential-algebraic equations (DAEs). Unlike previous approaches, these models account for the main process variables that affect the entire process, specially the final production of bioethanol. These detailed kinetic models, systematically tuned with experimental data, can be used in future studies within a model-based framework that allows performing realistic simulation and optimization aimed at bioethanol process design. A sensitivity analysis has been performed in order to identify the most sensitive parameters. The parameter estimation problem is solved with a simultaneous optimization approach in which the system of dynamic equations is converted into a set of algebraic ones through orthogonal collocation on finite elements. Thus, estimating the model parameters entails optimizing a weighted least squares objective function subject to the discretized algebraic constraints, resulting in a large-scale nonlinear programming problem (NLP). A good agreement with available experimental data has been obtained with estimated kinetic parameters in each model.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Parameter Estimation
dc.subject
Dynamic Optimization
dc.subject
Bioethanol Production
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Bioprocesamiento Tecnológico, Biocatálisis, Fermentación
dc.subject.classification
Biotecnología Industrial
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Dynamic Modeling and Parameter Estimation for Unit Operations in Lignocellulosic Bioethanol Production
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-01-24T18:30:49Z
dc.journal.volume
52
dc.journal.number
11
dc.journal.pagination
4146-4160
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Moreno, Marta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional del Sur; Argentina
dc.description.fil
Fil: Andersen, Federico Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional del Sur; Argentina
dc.description.fil
Fil: Diaz, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional del Sur; Argentina
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie302358e
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ie302358e
Archivos asociados