Artículo
Static and dynamic correlation lengths in supercooled polymers
Fecha de publicación:
05/2019
Editorial:
American Institute of Physics
Revista:
Journal of Chemical Physics
ISSN:
0021-9606
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A key point to understand the glass transition is the relationship between structural and dynamic behavior experienced by a glass former when it approaches Tg. In this work, the relaxation in a simple bead-spring polymer system in the supercooled regime near its glass transition temperature was investigated with molecular dynamic simulations. We develop a new manner to look at the dynamic length scales in a supercooled polymeric system, focusing on correlated motion of particles in an isoconfigurational ensemble (that is, associated with the structure), as measured by Pearson’s correlation coefficient. We found that while the usual dynamic four-point correlation length deviates from the structural (mosaic or point-to-set) length scale at low temperatures, Pearson’s length behaves similarly to the static length in the whole temperature range. The results lead to a consensus of similar scaling of structural and dynamical length scales, reinforcing the idea of the theories of Adam-Gibbs and random first order transition.
Palabras clave:
SUPERCOOLED POLYMER
,
DYNAMIC CORRELATION
,
STATIC CORRELATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Balbuena, Cristian; Gianetti, Melisa Mariel; Soulé, Ezequiel Rodolfo; Static and dynamic correlation lengths in supercooled polymers; American Institute of Physics; Journal of Chemical Physics; 150; 23; 5-2019; 234508
Compartir
Altmétricas