Artículo
Critical paths of non-permutation and permutation flow shop scheduling problems
Rossit, Daniel Alejandro
; Tohmé, Fernando Abel
; Frutos, Mariano
; Safe, Martin Dario
; Vásquez, Óscar C.




Fecha de publicación:
10/08/2019
Editorial:
Growing Science
Revista:
International Journal of Industrial Engineering Computations
ISSN:
1923-2926
e-ISSN:
1923-2934
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The literature on flow shop scheduling has extensively analyzed two classes of problems: permutation and non-permutation ones (PFS and NPFS). Most of the papers in this field have been just devoted on comparing the solutions obtained in both approaches. Our contribution consists of analyzing the structure of the critical paths determining the makespan of both kinds of schedules for the case of 2 jobs and m machines. We introduce a new characterization of the critical paths of PFS solutions as well as a decomposition procedure, yielding a representation of NPFS solutions as sequences of partial PFS ones. In structural comparisons we find cases in which NPFS solutions are dominated by PFS solutions. Numerical comparisons indicate that a wider dispersion of processing times improves the chances of obtaining optimal non-permutation schedules, in particular when this dispersion affects only a few machines.
Palabras clave:
NON-PERMUTATION FLOW-SHOP
,
SCHEDULING
,
MAKESPAN
,
CRITICAL PATH
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Citación
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; Safe, Martin Dario; Vásquez, Óscar C.; Critical paths of non-permutation and permutation flow shop scheduling problems; Growing Science; International Journal of Industrial Engineering Computations; 11; 2; 10-8-2019; 281-298
Compartir
Altmétricas