Artículo
Optical Losses in Hybrid Microcavity Based in Porous Semiconductors and its Application as Optic Chemical Sensor
Hernández, Claudia Antonio; Osorio, Edith; Urteaga, Raul
; Koropecki, Roberto Roman
; Alvarado, José Alberto; Juárez, Héctor
Fecha de publicación:
02/2019
Editorial:
Trans Tech Publications
Revista:
Journal Of Nano Research
ISSN:
1661-9897
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this study the experimental and theoretical optical analysis of a hybrid microcavity (HM) based in porous silicon (PS) and nanoporous anodic alumina (NAA) are presented. The microcavity was centered in the visible region at 760 nm. Distributed Bragg reflector (DBR) was obtained using galvanostatic anodizing method and while NAA by the two-step anodization technique. From SEM micrographs the HM different regions are observed. HM optical characterization in the visible region was done, considering two different light sources, point and non-point respectively. These results reveal a decrease in the quality factor (Q) from 350 to 190 when the source is exchanged; this behavior has been mainly attributed to the light scattering at NAA. Furthermore, it was possible to study Q change, through transmittance simulation using the transfer matrix and Landau-Lifshitz-Looyenga theoretical methods. When a point light source is used, there are no optical losses making possible to sense 1% of analyte resulting in a 0.29 nm redshift of the resonant peak. According with these results we propose to apply the HM as chemical optic sensor.
Palabras clave:
HYBRID STRUCTURE
,
NANOPOROUS ANODIC ALUMINA
,
OPTIC SENSOR
,
POROUS SILICON
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIS - LITORAL)
Articulos de INST.DE FISICA DEL LITORAL
Articulos de INST.DE FISICA DEL LITORAL
Citación
Hernández, Claudia Antonio; Osorio, Edith; Urteaga, Raul; Koropecki, Roberto Roman; Alvarado, José Alberto; et al.; Optical Losses in Hybrid Microcavity Based in Porous Semiconductors and its Application as Optic Chemical Sensor; Trans Tech Publications; Journal Of Nano Research; 56; 2-2019; 158-167
Compartir
Altmétricas